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ABSTRACT

INFORMATION THEORETIC MEASURE BASED INTERACTIVE
APPROACHES TO MULTI-CRITERIA SORTING PROBLEMS

OZARSLAN, Ali
Ph.D., Department of Business Administration
Supervisor: Assist. Prof. Dr. Glilsah KARAKAYA

September 2021, 132 pages

In this thesis, we develop interactive approaches for sorting alternatives evaluated on
multiple criteria. We assume that the preferences of the decision maker are consistent
with an additive preference function in general monotone and piecewise linear forms.
We progressively solve mathematical models to identify the possible category range
of the alternatives and ask the decision maker to place an alternative in each iteration.
Based on the mathematical models and Monte Carlo simulations, we hypothetically
assign alternatives to find the assignment frequency and the probability of an
alternative to be assigned to a category. We then use an information theoretic measure,
relative entropy, in the determination of the assignment uncertainties and the selection
of the alternative that will be assigned to a category by the decision maker. In our non-
probabilistic approach, our algorithm guarantees the assignment of all available
alternatives to their true categories assuming that the preferences of the decision
maker are consistent with an additive function. Our probabilistic algorithm allows the
assignment of the alternatives based on the estimated assignment probabilities once

the decision maker provides enough assignment information. We implement the
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proposed algorithms and different benchmark algorithms on three example problems
from the literature as well as randomly generated problems. We consider the cases
with/without category size restrictions and initial assignments in problem settings.
The results show that the proposed algorithms perform well in terms of decreasing the
cognitive burden of the decision maker, decreasing the misclassification of the

alterantives and the length of the decision process.

Keywords: Multiple Criteria Sorting; Additive Preference Function; Mathematical

Programming; Relative Entropy; Category Size Restriction



Oz

COK KRITERLI SINIFLANDIRMA PROBLEMLERINE BILGi TEORIK OLCU
TABANLI ETKILESIMLI YAKLASIMLAR

OZARSLAN, Ali
Doktora, Isletme Boliimii

Tez Yoneticisi: Dr. Ogr. Uyesi Giilsah KARAKAYA

Eylil 2021, 132 sayfa

Bu tezde coklu kriterlere gore degerlendirilen alternatifleri siniflandirmak igin
etkilesimli yaklagimlar gelistirilmektedir. Karar vericinin tercihlerinin genel monoton
ve parcalt dogrusal formlarda toplamsal bir tercih fonksiyonu ile tutarli oldugu
varsayilmaktadir. Alternatiflerin olasi kategori araligini belirlemek icin iterasyonlar
boyunca karar vericiden atama bilgisi alarak matematiksel modeller ¢ozilmektedir.
Alternatiflerin atanma sikligin1 ve olasiliklarini bulmak i¢cin matematiksel modeller
ve Monte Carlo simiilasyonlar1 yoluyla farazi atama yapilmaktadir ve alternatiflerin
kategorilere  atanma  olasiligit  bulunmaktadir.  Atama  belirsizliklerinin
hesaplanmasinda ve karar verici tarafindan atanacak alternatiflerin seciminde bir bilgi
teorik Olglsu olan goreceli entropi kullanilmaktadir. Gelistirilen oOlasiliksiz
algoritmada karar vericinin tercihlerinin toplamsal fayda fonksiyonu ile tutarli oldugu
durumda tim alternatiflerin dogru kategorilerine atanmasi garanti edilmektedir.
Gelistirilen olasiliksal algoritma karar vericiden yeterli atama bilgisi sagladiginda
atama olasiliklarma gore alternatiflerin atanmasia izin vermektedir. Onerilen ve

kiyaslama yapilacak algoritmalarin performanslarini 6lgmek igin literattirden tg¢ 6rnek
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problem ve rassal olarak olusturulmus problemler {izerinde uygulama yapilmaktadir.
Problemlerde baslangi¢ atamalar1 ve kategori biiyiikligii kisitlamalar1 olan/olmayan
durumlar dikkate alinmaktadir. Sonuglar onerilen algoritmalarin karar vericinin
biligsel yiikiinii ve sinflandirma hatalarin1 azaltmada ve karar verme sirecini

kisaltmada iyi performansa sahip oldugunu géstermektedir.

Anahtar Kelimeler: Cok Kriterli Siniflandirma; Toplamsal Tercih Fonksiyonu;
Matematiksel Programlama; Goreceli Entropi; Kategori Biiyiikligi Kisitlamasi
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CHAPTER 1

INTRODUCTION

Decision problems in any real or hypothetical setting usually require the decision
maker (DM) to consider decision units or alternatives. Such problems are referred to
as Multiple Criteria Decision Making (MCDM) problems when the alternatives are
evaluated on multiple criteria. In most cases, the criteria used to evaluate the
alternatives conflict with each other. For instance, consider the criteria, quality and
price, to evaluate the suppliers in a supplier selection problem. Since the price of a
product with high quality is generally expected to be high and the price of a product
with less quality to be low, these two criteria can be considered as conflicting criteria.
Another example is the usage of return and risk by the investors when deciding on the

financial instruments to invest in.

In case of conflicting criteria, the DM needs to make judgment about the trade-offs
between such criteria. These judgments provide information about the preference
structure of the DM. Multiple Criteria Decision Aid (MCDA) methods utilize the
preferences of the DM to assist in the decision making process. The aim in these
methods is to derive a way to reach a solution by facilitating an understanding of the

preferences of the DM through eliciting decision examples.

In most decision problems, there are discrete number of available alternatives to be
evaluated on multiple criteria. Roy (1981) divides the MCDM problems into four as
choice, ranking, classification/sorting and description problems as shown in Figure 1.
The first three types of problems require evaluation of the alternatives to end up with
a specific outcome whereas the last type of problems, description problems, are

encountered in situations where the alternatives and their unique features are
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described to define the characteristics of the problem. The aim in choice problems is
to select the most preferred alternative or a subset of incomparable or equivalent
alternatives. A typical example for choice problems is to identify the most suitable
candidate(s) for a position in a company. Another example is to select the most

appropriate supplier(s) for purchasing purposes.
Choice =@

az
as
ag

Description .
> Features and Characteristics

Figure 1. MCDM problem types (Source: Roy, 1981)

Alternative
a; a; az a,
as ag a7 ag

Classification/Sorting

) 4

The second type is the ranking problems where the alternatives are listed in a rank
from the most preferred to least preferred ones. Each alternative included in the
ranking has a preferential relationship with the rest of the alternatives in a typical
ranking output. The most preferred alternatives are usually the ones with the highest
rankings. The ranking of the two alternatives can be identical when the DM is
indifferent between these alternatives. The rankings are called partial (full) when the
ties between the rankings are (not) allowed. Country rankings based on energy
sustainability and university rankings based on academic excellence are the typical
examples of ranking problems.

In classification/sorting problems, the DM is required to assign alternatives into two
or more categories. The difference between the classification and sorting problems is
that categories are nominal in classification problems whereas they are ordinal in
sorting problems. In a typical classification problem, alternatives are assigned to

undefined or predefined categories based on similar characteristics shaped by the
2



category members. The statistical methods such as cluster analysis (Driver and
Kroeber, 1932; Zubin, 1938; Tryon, 1939) and multi-dimensional scaling (Torgerson,
1952; 1958; Gower, 1966) are usually used for classification problems. The
classification of the species or chronic diseases based on multiple criteria are the

examples in this field.

In sorting problems, the aim is to assign the alternatives to the categories in such a
way that an alternative in a better category is preferred to all alternatives in worse
categories. In most cases, the categories are separated from each other with boundaries
such as threshold values. There are several situations or areas in daily life and business
context where the sorting problems are encountered. A representative example is to
assign the master applicants or loan applications into three categories as accepted,
pending, and rejected. Assignment of firms into categories based on their risk attitudes
is another example for sorting problems typically performed by the credit rating

agencies.

There are different approaches developed to solve Multi-Criteria Sorting (MCS)
problems. These approaches can be categorized as multivariate statistical analysis,
non-parametric statistical learning approaches and Preference Disaggregation
Analysis (PDA). Well-known multivariate statistical methods are logit (Bliss, 1934),
probit (Berkson, 1944) and discriminant analysis (Fisher, 1936; Smith, 1947). These
techniques are usually parametric approaches restricted with statistical assumptions
such as normality and homoscedasticity. Non-parametric methods are neural networks
(Ostermark, 1999), support vector machines (Kartal et al. 2016), fuzzy set theory
(Belacel and Boulassel, 2004) and rough sets (Greco et al., 2001; 2002).

The aim of PDA is to build a preference model that is consistent with preferences of
the DM (Jacquet-Lagreze and Siskos, 2001). PDA utilizes the decision examples of
the DM to explore the parameters of the preference model. One way to use the DM’s
preferences is to ask him/her to specify the values of model parameters required to
assign the alternatives. This is called direct elicitation technique and is usually
cumbersome in terms of cognitive burden on the DM. In PDA, typically, outranking-

3



based approaches are considered within the direct elicitation techniques. ELECTRE-
TRI is a widely used outranking-based method for MCS problems (Yu, 1992). The
method requires the DM to specify weights, thresholds, and representative category
profiles. By this way, the outranking relations in form of pairwise comparisons

between the alternatives are defined.

As an alternative to the direct elicitation techniques, function-based approaches are
considered in PDA where the preference structure of the DM is usually assumed to
have an implicit function which is called a preference function in general. Function-
based approaches are indirect elicitation techniques suggested to approximate the
model parameters based on the decision examples obtained from the DM. The most
common decision example in approaches to MCS problems is the assignment
information of a set of reference alternatives. The DM may initially provide the
assignment examples (e.g., “alternative a belongs to the first category”) and the rest
of the alternatives are assigned by the decision model. Another way of obtaining
assignment examples is to progressively elicit category information through
interaction with the DM. In interactive approaches, the involvement of the DM in
decision process facilitates better understanding and incremental learning of the

model parameters by him/her.

Several sorting approaches have been developed assuming that the preferences of the
DM are consistent with different forms of additive preference functions. Additive
preference function in monotonically non-decreasing form is the general preference
structure where the local utilities in each criterion are added to find the aggregate
utility of the alternatives. Piecewise linear (Koksalan and Ozpeynirci, 2009) and
quasiconcave preference functions (Ulu and Kdksalan, 2001; 2014) are widely used
forms of additive functions to represent the preferences of a DM. Besides,
Tchebycheff (Soylu, 2011), quadratic (Ozpeynirci et al., 2017) and different forms of
L, norm (Celik et al., 2015) functions are utilized to demonstrate the preference

structure of a DM in MCS problems.



In this thesis, we develop interactive sorting approaches assuming that the preferences
of the DM are consistent with an additive preference function. Considering piecewise
linear and general monotone preference functions, we solve mathematical models to
define the category range of the alternatives. At each iteration, an alternative is
assigned by the DM and we incorporate this information to the mathematical models
in order to narrow down the possible assignment of the alternatives. We hypothetically
assign the alternatives to the categories in several times based on a set of compatible
parameters obtained from mathematical models and Monte Carlo simulations. By this
way, we gather information about the assignment frequencies of the alternatives to the
categories. The previous studies do not consider the parameters of the mathematical
models for hypothetical assignments. Moreover, the previous simulation-based
approaches do not take into account the incompatibility of the randomly generated
parameters while we propose a practical approach to minimize the incompatibility

problem.

We convert the frequency information to probability of belonging to a category for
each alternative. We use an information theoretic measure, relative entropy, to
measure the assignment uncertainty of the alternatives. Although there are some
approaches that utilize entropy calculation in multi-criteria ranking problems, to the
best of our knowledge, there has been no previous work that engages relative entropy
in measuring uncertainty and ambiguity within the sorting framework. This study
develops an efficient method to shorten the decision process in the assignment of

alternatives and decrease the cognitive burden of the DM.

We utilize the assignment uncertainties in selecting the alternative to ask the DM and
identifying the uncertainty of the system. We consider non-probabilistic and
probabilistic assignments as well as the cases with/out the category size restrictions.
In our non-probabilistic algorithm, alternatives are assigned to their true categories by
the DM and the mathematical models. Our probabilistic algorithm allows the
probabilistic assignment of the alternatives once the DM provides sufficient
assignment information. As far as we know, there is no interactive study that makes

probabilistic assignments except one study. In that study, it is observed that the
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misclassifications are at a high level. This gap in the literature is tried to be filled with
the proposed interactive probabilistic method which aims to complete the decision
process with the least information to be obtained from DM and the least classification

error.

We test the performances of our non-probabilistic and probabilistic algorithms on
three example problems from the literature as well as randomly generated problems
by comparing with benchmark algorithms and report our findings. The rest of the
thesis is organized as follows: In Chapter 2, we review the literature on MCDA
approaches and provide an overview of the methods and concepts utilized in the
proposed algorithms. In Chapter 3, we first present the proposed interactive
approaches and then explain the benchmark approaches that are used for comparison.
In Chapter 4, we conduct computational experiments to test the approaches on several
problems. We finally present the concluding remarks and future research directions
in Chapter 5.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

In this chapter, we first give a brief summary of the approaches to multiple criteria
choice and ranking problems. Then, we explain the approaches to MCS problems in
detail. Lastly, we provide an overview of the methods and concepts utilized in the

analysis.

2.1 Approaches to multiple criteria choice and ranking problems

Multiple criteria choice problems and ranking problems share common
characteristics. It is typical for both types of problems to require judgments of the DM
in form of pairwise comparisons of the alternatives. Furthermore, the solution may
change depending on the set of alternatives included in the problem. For example, the
most preferred alternative or the ranking of an alternative may change when new
alternatives become available. Another similarity is that the outcome of a ranking
approach provides the most preferred alternative(s) as well. For these reasons, there
are MCDA methods that are used to handle both choice and ranking problems, and
these methods can be listed as: AHP (Saaty, 1980), SMART (Edwards, 1971),
SMARTER (Edwards and Barron, 1994), ORESTE (Pastijin and Leysen, 1989), UTA
(Jaquet Lagreze and Siskos, 1982), MACBETH (Bana e Costa et al., 2005),
PROMETHEE (Brans et al., 1986), ELECTRE (Roy, 1968; 1991), TOPSIS (Hwang
and Yong, 1981) and VIKOR (Opricovic, 1998).

The aforementioned MCDA methods for choice and ranking problems are developed
based on two main approaches: value or utility-based criteria aggregation and

outranking relations. The former assigns an overall aggregating score for alternatives

7



based on the marginal utilities in each criterion. AHP, UTA, MACBETH, TOPSIS
and VIKOR are among the well-known methods considered in this category. These
methods are based on Multi-Attribute Utility Theory (MAUT) developed by Keeney
and Raiffa (1976). In MAUT, the aim is to map the alternatives evaluated by multiple
criteria into a single scale so that they can be compared in terms of overall utilities.
The basic principle behind this approach is shown in (2.1) and (2.2). Without loss of
generality, suppose that more is better in each criterion. The overall utility of
alternative a, U(a), is greater than that of alternative b if and only if alternative a is
preferred over alternative b as in (2.1). The overall utilities of alternative a and b are

equal when there is a preferential indifference among the alternatives as in (2.2).

U(a) >U(b) & a>b 2.1)
U(a) =U(b) & a~b (2.2)

The second type of methods are based on outranking relations between alternatives.
The outranking-based methods require the DM to identify weights and thresholds to
explore the outranking relations. By this way, the pairwise comparisons between the
alternatives are made through binary relation S as in (2.3) (Roy, 1991). Binary
relation between alternatives a and b indicates that alternative a outranks alternative

b if and only if alternative a is at least as good as alternative b.

aSb < aisatleastasgoodas b (2.3)

PROMETHEE and ELECTRE methods are the well-known outranking-based
techniques for choice and ranking problems. PROMETHEE | is designed for partial
rankings whereas PROMETHEE 11 is applied to problems requiring full rankings
(Behzadian et al., 2010). ELECTRE 1 is used in choice problems and ELECTRE I,
I11 and 1V are usually applied in ranking problems (Ishizaka and Nemery, 2013).

Data Envelopment Analysis (DEA), introduced by Charnes et al. (1978), evaluates
decision making units (DMUSs) in terms of efficiency in converting inputs/outputs to

outputs/inputs. The efficiency scores of DMUs are calculated by the ratio of weighted
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sum of outputs to that of inputs where the weights are obtained by mathematical
programming technique. DMUs with the relative efficiency score of one are called
efficient DMUs while the others are inefficient. Sinuany-Stern et al. (1994) suggested
using the D, measure which is the minimum number of efficient DMUs to be
eliminated so that an inefficient DMU can become efficient. Doyle and Green (1994)
developed the cross-efficiency scores method for ranking problems. Each DMU is
assessed with other DMUs’ optimal weights and then the average of the D, scores is
denoted as the cross-efficiency score. Kdksalan and Tuncer (2009) addressed the
drawbacks of the cross-efficiency scores in case of outliers and crowding of the
alternatives in specific areas. The authors proposed the area of efficiency score graph
method that considers the converging speed of efficiency score to one when other

DMUs are deleted in an order through an integer programming model.

Interactive approaches have been developed for both choice and ranking problems. In
these approaches, the preferences of the DM are assumed to be consistent with an
underlying preference function. Typically, the search space is reduced in an iterative
way utilizing the properties of the assumed preference function. The DM provides
preference information between alternatives in a progressive way. The underlying
preference function is represented by linear (Zionts, 1981), quasiconcave (Korhonen
et al., 1984), quasiconvex (Koksalan et al., 1984), general monotone (Kéksalan and
Sagala, 1995a) and different forms of L, (Karakaya et al., 2018) functions in

approaches for choice problems.

The convex cone approach of Korhonen et al. (1984) is incorporated in other studies
that are based on quasiconcave preference functions. The idea behind the convex cone
approach is that the preference cones, constructed by the preferences of the DM and
the properties of the quasiconcave functions, can be used to explore additional
preferences regarding the other alternatives. Using the preferences of the DM in form
of pairwise comparisons, the preference cones are generated by linear programming
(LP) models to evaluate the alternatives in terms of cone dominance (see Karsu, 2013

for a review on convex cone approaches).



The aforementioned interactive approaches to choice problems consider the pairwise
comparison of subsets of alternatives to find the most preferred one and hence they
are not designed for ranking problems. Korhonen and Soismaa (1981) develop an
interactive ranking approach based on a linear preference function. In order to rank
the alternatives, the weights of criteria are estimated by LP models. Karsu et al. (2018)
consider the quasiconcave preference function combined with equity or fairness
concerns leading to non-additive preferences on criteria. The authors develop an
interactive ranking approach based on the convex cones and polyhedra cones as well
as the generalized Lorenz dominance which is widely used in case of equity concerns.
Tezcaner Oztiirk and Koksalan (2019) develop a framework for interactive elicitation
of pairwise comparison information for linear and quasiconcave preference functions.
The results show that progressive elicitation of the preferences yields better ranking

performance than obtaining a priori preference information.

2.2 Approaches to MCS problems

Sorting problems have different characteristics from choice and ranking problems
(Vetschera et al., 2010). In choice and ranking problems, the addition of the new
alternatives may change the current position of the available alternatives. In sorting
problems on the other hand, the addition of new alternatives does not change the
category of the previously assigned alternatives (Zopounidis and Doumpos, 2002).
That is why the sorting problems usually require the DM to make absolute judgments
while the judgments are relative in choice and ranking problems. Furthermore, in
sorting problems to construct the decision model usually assignment examples are
utilized rather than the pairwise comparisons between the alternatives as utilized in

choice and ranking problems.

Doumpos and Zopounidis (2011) distinguish the widely used MCDA approaches into
two parts: statistical learning and preference disaggregation analysis (PDA). Rule-
based models are popular among the statistical learning techniques for sorting
problems. Greco et al. (2002) develop a rule-based model based on the dominance-
based rough set approach (DRSA) of Greco et al. (2001) which is an extension to the
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rough set theory of Pawlak (1982). In rule-based models, “if conditions then
response” type decision rules are developed to explore the preferences of a DM.
Rough approximations based on dominance relations are built to define the upward
and downward unions of the categories. The decision rules in form of certain, possible
and approximate knowledge provide information about the preferences of the DM
which in turn is used for the assignment of alternatives. Greco et al. (2004) show that
rule-based models are more useful than outranking-based and function-based
approaches in terms of handling the inconsistencies among the decisions of the DM.

2.2.1 Approaches based on Preference Disaggregation Analysis (PDA)

PDA involves construction of the preference model on criteria aggregation based on
the preferences of the DM (Jacquet-Lagreze and Siskos, 2001). The general
framework of PDA for MCDM problems is illustrated in Figure 2. There have been
several applications of PDA in real-world MCDM problems such as financial
management (Zopounidis et al., 2000), marketing (Mihelis et al., 2001) and job
evaluation (Spyridakos et al., 2001). Doumpos and Zopounidis (2011) mention the
two popular paradigms on PDA which are outranking-based and function-based
approaches. Recently there has been a growing interest among approaches to MCS
problems based on outranking and function-based models.

Decision data— DM’s

Criteri delli >
riteria modelling > global judgment policy

A\ 4

Problem
'y \ 4
Consistency of the
preference model and | Prifgrzz?rzim ?]del
DM’s judgment policy
P Y
Decision ]

Figure 2. PDA in MCDM problems (Source: Siskos and Spyridakos, 1999)
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2.2.1.1 Outranking-based approaches

The general framework for outranking-based approaches is given in Figure 3.
Outranking-based sorting approaches usually require the DM to specify weights,
thresholds and fictitious profiles for the lower and upper bounds of the categories. By
this way, outranking relations are identified and the pairwise comparisons between
the alternatives and category profiles are made for sorting alternatives. The ELECTRE
TRI method, proposed by Yu (1992) is a well-known sorting method based on
outranking relations. In ELECTRE TRI, outranking relations are constructed by
concordance and discordance indices that are calculated by the weights of criteria.
The possible assignments of the alternatives are identified by the pessimistic and

optimistic rules.

pre]f)elt/énsces Aggregation of DM’s Exploitation of Aid the DM
preferences and | the constructed | | totakea
construction of the | outranking " “good”

Problem outranking relations relations decision

Figure 3. Outranking-based approach (Source: Siskos and Spyridakos, 1999)

The direct elicitation of parameter values from the DM in ELECTRE TRI is widely
criticized since it is unrealistic for the DM to simultaneously provide necessary
parameters (Dias et al., 2002). Mousseau and Slowinski (1998) develop an interactive
approach to obtain assignment examples in a progressive way. The parameters of
ELECTRE TRI are estimated through mathematical models based on past
assignments of the DM. Majority rule sorting (MR-Sort), developed by Bouyssou and
Marchant (2007a; 2007b), is a simplified version of ELECTRE TRI where the
category profiles and criteria weights are omitted by eliciting assignment examples
from the DM. The recent work of Ramezanian (2019) in ELECTRE-TRI obtains a
priori assignment information from the DM and solves mathematical models to define
the category profiles with maximum reliability of outranking relations. Tervonen et
al. (2009) develop SMAA-TRI where the profiles, thresholds and weights in the

ELECTRE-TRI are estimated by Monte Carlo simulations. The study suggests to use
12



uncertain values for the category profiles and thresholds while the weights can be

given as intervals.

2.2.1.2 Function-based approaches

One of the widely used indirect elicitation techniques for MCDM problems is to
represent the preferences of the DM with an implicit function which is called a
preference function. A general framework of the function-based approaches is given
in Figure 4 by Siskos and Spyridakos (1999). The value or utility of the DM is
assumed to be consistent with a preference function. Additive preference function is
widely used in practice for preference modeling (Keeney and Raiffa, 1976). Additive
functions have usually monotonically non-decreasing form in cases such as price of a
product or expected duration of a service (Ghaderi et al., 2017). Such function is called
general monotone which covers the special forms of additive preference functions
such as linear, quasiconcave or Tchebycheff functions. Koksalan and Sagala (1995b)
develop an interactive approach to test the form of the preference function that is
consistent with the preferences of the DM. They progressively search for consistency
of the DM’s preferences with respect to linear, quasiconcave, quasiconvex or a
general monotone additive preference function. In each iteration, the DM is asked to
make pairwise comparisons between the alternatives and this information is used to

check the consistency of the functions.

DM’s
references Aggregation of .
P DN?% plgreferences | Value or utility | Decision
g - tem e
Problem on the criteria Sys

Figure 4. Function-based approaches (Source: Siskos and Spyridakos, 1999)

Some studies argued that a preference function assumption is unrealistic. The
preferential independence assumption of MAUT requires that a criterion does not
affect the preference order of the alternatives evaluated on another criterion. This

assumption is found to be unrealistic since there is often an interaction between
13



criteria (Grabisch 1995; Hillier, 2000). This raises questions regarding the additivity
of the functions. One way to allow the interaction between criteria is to use Choquet
integral as an evaluation function to represent the preferences of the DM (Benabbou
etal., 2017). In order to incorporate non-additivity in a model, Choquet integral values
are calculated by defining a capacity function that defines capacity values for each
combination of criteria. However, the specifications of Choquet capacities require to
define complex fuzzy measures (Grabisch 1995; Tzeng and Huang, 2011; p. 4). On
the other hand, additive function-based approaches have been widely utilized in

practice due to ease of use and transparency (Doumpos and Zopounidis, 2004).

Linear additive preference function is the simple and practically useful function to
represent the preferences of the DM. The weights of criteria are multiplied with the
corresponding criteria scores and then summed to find the aggregate utility of an
alternative. One of the most common and basic approaches on linear preference
function is using fixed weights in each criterion. The weights are usually determined
by the authorities or experts; and then aggregate utility of alternatives is calculated by
weighted sum of the criteria scores. For instance, Global MBA Program rankings are
annually published by Financial Times (FT) and there are 20 criteria such as alumni
salary and portion of the women faculty members. FT assigns fixed criteria weights
which are criticized by the authorities (Devinney et al., 2008). Koksalan et al. (2010)
suggest using weight ranges instead of fixed weights. They show that a little deviation
of fixed weights causes to dramatic changes of the rankings which raises questions

about the robustness of the methodology.

Quasiconcave preference functions fit well to human behavior in most real-world
situations (Arrow and Enthoven, 1961). Principles in economics such as risk aversion
in investments and diminishing marginal rate of substitution in consumption are
explained by the assumption of quasiconcavity (Silberberg and Suen, 2001, p. 260-
261). Quasiconcavity of a function can be approximated by a linear function in a
piecewise form in order to avoid to employ a nonlinear function (Zangwill, 1967).
The piecewise linear utility function can be used in many situations since it is possible

to approximate any nonlinear utility function by this form.
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A well-known sorting method, UTADIS was first presented by Devaud et al. (1980)
and developed by Jacquet-Lagreze (1995) as a variant of the UTA method of Jacquet-
Lagreze and Siskos (1982). In UTADIS the alternatives are assigned to categories by
estimating an additive preference function in a piecewise linear form. An LP model is
solved to minimize the classification errors due to misclassification of the alternatives.
UTADIS is a threshold-based sorting method where the categories are separated by
some threshold values. Assignment information of a set of reference alternatives are
employed to the LP model to estimate the decision parameters which are in turn used
to assign the non-reference set of alternatives, i.e., the remaining alternatives that are
not included in the set of reference alternatives. A detailed explanation of UTADIS is

given in Section 2.3.1.

UTADIS has been widely applied for real-world problems such as country
classification based on energy intensity (Diakoulaki et al., 1999), financial distress
prediction of the firms (Zopounidis and Doumpos, 1999), and supplier classification
(Manshadi et al., 2015). Zopounidis and Doumpos (1999) compare UTADIS with
discriminant analysis, logit and probit analysis; and showed that UTADIS always
outperforms the statistical methods. Ulucan and Atict (2013) apply UTADIS to
perform the country risk classification by using financial data of rating agencies. The
authors develop an extension of UTADIS where the classification errors are defined
by assignments of the alternatives into multiple categories instead of a single category
as in UTADIS. Hence, a goal programming model is solved to minimize total
classification errors. The classification results in different datasets including the
financial data show that the proposed method outperforms UTADIS in terms of

misclassification rates.

UTADIS estimates a single set of parameters that is aimed to fit well to the preference
information obtained from the DM. However, there can be several compatible sets of
parameters that result in different classification of the non-reference alternatives
(Koksalan and Ozpeynirci, 2009). The robustness of the decision parameters derived
from a single preference function have been taken into consideration within ordinal

regression framework (Figueira et al., 2009; Greco et al., 2008; 2010). The role of
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ordinal regression in function-based approaches is to formulate robust conclusions
based on the preferences of the DM. Ordinal regression technique considers the whole
set of compatible preference functions instead of a single preference function
compatible with the decision examples of the DM as in UTA and UTADIS methods.

2.2.1.2.1 Interactive function-based approaches

Interactive approaches usually assume that the preference function of the DM is in
implicit form (Korhonen et al., 1992). Hence, these approaches consider the whole set
of compatible preference functions (Greco et al., 2010). A progressive elicitation of
the preference information through interaction with the DM helps to enhance learning
about the preference structure of him/her. The progressive nature of the approach
enables the DM to turn back to the previous steps to reconsider the judgments

especially in case of inconsistencies.

One of the pioneer approaches to MCS problems considering the whole set of
compatible preference functions is the work of Ulu and Kéksalan (2001). The study
develops interactive approaches that assign alternatives into two categories -
acceptable and unacceptable - assuming that the preferences of the DM are consistent
with linear, quasiconcave or general monotone preference function. At each iteration,
the DM is asked to assign an alternative and this information is imposed to the
mathematical models. In order to determine the category of the alternatives in linear
preference function case, LP models are solved by incorporating the assignment
examples of the DM as linear constraints. For instance, if the DM assigns alternative
a; to the acceptable category and alternative a,, to the unacceptable category, then the
constraint in (2.4) is added to the LP models where w refers to the criteria weight
vector. (2.4) enforces the model to assign weight values in such a way that the

aggregate utility of a; should be at least as much as that of a,.

When defining the category of alternative a,., constraints (2.5) and (2.6) are added
one by one and the feasibility of the model is checked. If the model with constraint in

(2.5) is infeasible, then there is no feasible weight vector that makes aggregate utility
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of a, better than ay; thus, a, belongs to the unacceptable category. The same
inference is made for searching the feasibility of the model with constraint (2.6) to
check whether or not alternative a,- can be assigned to the acceptable category. The
study utilizes the dominance relationships in defining the categories of the alternatives

to decrease the number of LP models solved.

w(a;—ag) =0 (2.4)
w(a,—a;) =0 (2.5)
w(a;—a,) =0 (2.6)

In quasiconcave preference function case, Ulu and Koksalan (2001) utilize convex
combinations of the alternatives, convex cone approach of Korhonen et al. (1984),
and the dominance relations. If an alternative dominates any convex combination of
alternatives in the acceptable category, then this dominating alternative is also
assigned to the acceptable category. Convex cones are generated between the
alternatives in the acceptable category and the non-dominated alternatives in the
unacceptable category. If an alternative is inefficient with respect to such convex
cones, then this alternative is assigned to the unacceptable category. The authors
simply use the dominance relations to determine the assignments in their algorithm
for general monotone preference functions since this form utilizes weaker properties
when compared to the linear and quasiconcave functions. Ulu and Koksalan (2014)
extend the approach of Ulu and Koksalan (2001) when there are more than two

categories for underlying quasiconcave preference function.

Koksalan and Ulu (2003) generalize the approach of Ulu and Kdksalan (2001) to
assign the alternatives into more than two categories assuming an underlying linear
preference function for the DM. The possible categories of the alternatives are defined
in terms of the best and worst categories. The best and worst possible categories of an
alternative is defined as C; and Cg, respectively for a g-category problem at the
beginning of the algorithm. The aggregate utility of an alternative is compared with
that of convex combination of the alternatives assigned to the same category as in

(2.7) and (2.8) where y; =0 and X, .ec, #; = 1. If maximization of ¢ with the
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constraint in (2.7) results in positive objective function value (&), then a; is assigned
to Cy, or a less preferred category and hence the best possible category of a; is defined
as C. Similarly, in the same maximization problem, a positive objective function
value in case of constraint in (2.8) indicates that the worst possible category of a; is

C,. By this way, the category range of the alternatives are narrowed down to find the

true categories alternatives belong to.

w Z pia;—aj |—=0 (2.7)
a;ECk

w z ua; —a; +e<0 (28)
a;ECk

Koksalan and Ozpeynirci (2009) develop a threshold-based interactive sorting
approach using mixed integer programming models (MIPs). They assume that the DM
has additive utility function in a piecewise form. In MIPs, each unlabeled alternative
is assigned to a category through binary variables. At each iteration, alternative a; is
randomly selected and its overall utility, U(a;), is compared to category threshold,
Uy, asin (2.9) and (2.10). Here, u; defines the lower bound of category C; where C;
corresponds to the most preferred category. The objective in MIPs is to maximize a
nonnegative &. The first model includes constraint (2.9) whereas the second model
contains constraint (2.10). Obtaining an infeasible solution in the first model indicates
that the worst possible category of alternative a; is Cj. If the second model is
infeasible, then C, is the best category of alternative a;. By this way, the possible
category range of alternatives are narrowed down at each iteration. Then, the selected
alternative is presented to the DM with its category range unless its exact category is
found. The DM places the alternative into a category and this information is
incorporated to the model in the following iterations. The assignments are done either
by the model or the DM until all alternatives are assigned.

Ulay) <u, —¢ (2.9)

Uay) = up_q (2.10)
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The usage of mathematical programming models to identify the possible assignments
of the alternatives is generalized in the robust ordinal regression (ROR) principle
(Greco et al., 2008). ROR principle addresses all possible sets of parameters
compatible with the preferences of the DM. Greco et al. (2010) adapt the ROR
principle by considering the set of general monotone additive utility functions rather
than piecewise linear form. The UTADIS®MS method is developed to classify
alternatives considering the set of compatible additive utility functions. Based on the
assignment examples provided by the DM, the alternatives are necessarily or possibly
assigned to one or several contiguous categories with respect to the set of compatible
value functions derived from the preference relations of the assignments of the
alternatives. The method is suggested to be used as an interactive approach to sorting
problems. At each iteration, the possible and necessary categories of the alternatives

are updated and presented to the DM.

Benabbou et al. (2017) develop an interactive regret-based approach based on
Choquet integral for threshold-based sorting problems. The Choquet integrals allow
interacting criteria and non-additive preferences (Choquet, 1955; Denneberg, 1994).
The study assumes that the thresholds that separate the categories are defined by the
DM at the beginning of the decision process. The regret approach considers the
incorrect assignment of the alternatives based on the difference between thresholds
and the Choquet values. LP models are solved in order to find the assignment that
minimizes the regret due to misclassification. The minimax regret strategy is

suggested to be used in the information gathering process from the DM.

Another interactive approach with predefined thresholds is the recent study of Kang
et al. (2020) which is based on linear preference function. In order to establish linear
relations between pairs of criteria weights, the authors generate hypothetical
alternatives to ask the DM to make comparisons in a progressive way. The rankings
of the decision weights are obtained by the preferences of the DM among the
hypothetical alternatives. The rankings are incorporated to the LP models to find the

possible categories of the alternatives at each iteration.
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2.2.1.2.2 Approaches for constrained sorting problems

In some sorting problems, the DM may initially provide information about his/her
preferences or some limitations due to nature of the problem. For instance, the human
resources manager may indicate that experience-based criteria are more important
than education-based criteria when classifying the job applicants as hired and not
hired. Furthermore, the DM or the nature of the problem may impose certain bounds
or exact values on the number of alternatives to be assigned to a category/categories
as category size restrictions. For example, a credit manager may put restriction on the
number of loan applications to be accepted. Such problems are defined as constrained
sorting problems (CSP) by Mousseau et al. (2003). The restrictions on the importance
of the criteria can be handled by adding linear constraints to the mathematical models
in function-based approaches. Category size restrictions, on the other hand, are
different from the rest of the restrictions since a new measure is necessary to limit the

number of alternatives to be assigned to a category.

In order to incorporate category size restrictions, Mousseau et al. (2003) define a
binary variable y;; in such a way that its value is one if alternative g; is assigned to
the k" category and zero, otherwise. yjk indicates the eligibility of the assignment of
the alternatives to the categories. The study illustrates the application of the
restrictions including the exact values of the category sizes in UTADIS model. The
constraints in (2.11) and (2.12) ensure that the overall utility of an alternative is
between the boundaries of the k" category if alternative a; is assigned by binary
variable (y;, = 1). Here, a big number, M, is included in the constraints to activate
the constraints only if y;, = 1. Let s, be the (exact) size limit of the kt" category and
m be the number of alternatives to be evaluated. Then, the category size restrictions
are provided in (2.13). Mousseau et al. (2003) estimate a single set of parameters as
in UTADIS in their application.

U(ay) —we s M- (L—yp) —¢ (2.11)
U(ay) —ug—1 + M- (1 —yp) =0 (2.12)
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Zy]k = Sk VCk (213)
j=1

MIP models are also used by Ozpeynirci et al. (2018) to handle category size
restrictions. The study develops an interactive sorting approach for constrained sorting
problems. The proposed algorithm checks for the consistency of the assignment of the
alternatives with the category size restrictions. Mathematical models are solved at
each iteration to diagnose and solve the inconsistencies so that minimum number of
changes is required in the previous assignments of the alternatives. The authors
implement their algorithm on an outranking-based method, MR-Sort and function-
based sorting approach assuming a general additive preference function. The results
indicate that the category size restrictions lead to elicit reasonable amount of

assignment information from the DM.
2.2.1.2.3 Approaches based on probability measure

Recent studies on sorting problems have implemented the idea of defining the
probability that an alternative belongs to a category. Kadzinski and Tervonen (2013)
combine the ROR approach of Greco et al. (2008; 2010) with stochastic multicriteria
acceptability analysis (SMAA) for sorting problems implemented with general
additive preference functions. SMAA, introduced by Lahdelma et al. (1998), is a
simulation technique to provide information about the weight space that represents
the preferences of the DM (see Tervonen and Lahdelma (2007) for an application
example). Uniform sampling of the compatible preference functions is derived by
Monte Carlo simulations. The authors develop category acceptability index (CAl) for
each possible category of an alternative representing the share of compatible
preference functions that assign the corresponding alternative to a category. CAl is
deemed as probability of belonging to a category and used to support the DM about
the possible assignments of the alternatives. The randomly generated parameters to
be used are rejected when they are not compatible with the assignments of the DM.
The study takes attention to the high rejection rates of the sampling preference
functions when the number of assignment examples increases.
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Celik et al. (2015) develop a probability measure based on L, distance norm as a
preference function. Their algorithm has a non-interactive design requiring initial
assignments by the DM. Two mathematical models are solved to find the minimum
and maximum utilities of alternatives as well as the category thresholds. The
assignments of the DM are incorporated in the first model to minimize the
classification error while maximizing the range between the maximum and minimum
category thresholds as a secondary objective. The parameter values obtained in the
first model are imposed to the second model to find the utility ranges of the
alternatives whose categories are not known. Then, the probability of an alternative
to belong to a category is determined by assuming that the minimum and maximum
values have a specific (uniform or triangular) distribution function. Accordingly,
probabilities are calculated and the rest of the alternatives are assigned based on these
probabilities. The applications on different data sets indicate that the probabilistic
approach outperforms the classification trees and UTADIS methods. The results also
show that the approach may cause the misclassifications of all alternatives that belong
to a category by giving no interval and thresholds to a category or categories.

Bugdact et al. (2013) propose an interactive probabilistic approach for sorting
alternatives assuming that the preferences of the DM are consistent with piecewise
linear additive function. Their algorithm solves LP models to narrow down the
category ranges of the alternatives. Instead of presenting the comparison between the
utility of alternatives and category thresholds as in (2.9) and (2.10), they insert it to
the objective function of the LP models as the difference, U(a;) — . The possible
category of an alternative is defined based on the sign of the objective function value
of the maximization and minimization models. The criterion weights and category
thresholds are regarded as unknown parameters and their minimum and maximum
values are estimated through additional LPs. Assuming uniform distribution among
the minimum and maximum values, the authors calculate the probability that the

utility of an alternative is larger than a category threshold.

If the probability that the utility of an alternative is larger than a category threshold

exceeds a user-specified threshold value, 1 —t, then the algorithm makes a
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probabilistic assignment of the alternative to the corresponding category. At the end
of each iteration, an alternative is selected to be assigned by the DM. Utilizing the
existing assignment information, the LP models are resolved and the probabilities are
updated in the succeeding iterations. In addition to the probabilistic classification,
Bugdaci et al. (2013) also consider the non-probabilistic case that correctly places
alternatives to categories. The selection of the alternative to ask the DM is also based
on the updated probabilities. The alternative that has the probability closest to 0.5 is
regarded as the most ambiguous alternative to ask the DM. They apply their algorithm
on the assignment of 81 Global MBA programs into three categories. The number of

misclassified alternatives increases when t is increased up to 0.5.
2.3 Background

We first provide the notation and then summarize the UTADIS method with its
drawbacks in terms of stability and accuracy concerns. In the second part, we give the
formulae, illustrate the entropy and relative entropy concepts with numerical

examples, and mention the previous works on the two concepts.

2.3.1 The UTADIS method

Leta; = (ajl, s ajn)T be an alternative that is evaluated with n criteria in A4, the set
of available alternatives, and |A| = m. Suppose that the alternatives are to be assigned
to g predefined categories, C; > C, > ... > C,, Where C; and C, are the most and least
preferred categories, respectively. Let C,, be the set of alternatives that belong to the

k" category. UTADIS assumes an underlying additive utility function as follows:

U(e) = iui (9:(a))) (2.14)

where g;(a;) denotes the score of alternative a; in criterion g;. U(a;) is the overall

utility of alternative a; and u; (gi(aj)) denotes the marginal utility of alternative a;

23



in criterion g;. Each criterion has a marginal utility function in piecewise linear form
as in Figure 5. Let g™™ and g™%* be the minimum and maximum scores in criterion
gi, respectively, i.e., u;(g/™™) =0 and w;(g/**) = 1. For each criterion g;, the

range [g™™, g/*] is divided into b; subintervals [g?, gP™*] forp = 1, ..., b;.
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Figure 5. Piecewise linear form of marginal utility functions (Source: Doumpos and
Zopounidis, 2004)

The number of subintervals, b; can be defined by the DM or the analyst. Furthermore,
two heuristic approaches are suggested to define the number of subintervals. HEUR1
(Doumpos and Zopounidis, 2002) is the basic approach to partition the subintervals
so that each one contains at least one alternative. Doumpos and Zopounidis (2004)
mention that HEUR1 does not consider how the alternatives are distributed among
different criteria. The authors proposed HEURZ2 algorithm which calculates the
number of subintervals for each criterion in a way that the maximum number of
subintervals at the initial step starts to decrease at each iteration through merging the
subintervals as follows: A minimum threshold value for the number of alternatives in
a subinterval is updated iteratively and the subintervals that include insufficient
number of alternatives merge with the precedent one. Merging is performed if the
number of basic variables included in the optimal solution of an iterated model is less

than the number of subintervals. The goal here is to eliminate the subintervals that
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have redundant utility values due to redundant variables. Through extensive
simulations, Doumpos and Zopounidis (2004) found that HEUR2 method improves

the stability and sorting performance of the model.

Let w, = w;(gP ™) — w;(gP’) denote the utility of the subinterval p in criterion g;.
For instance, w;, in Figure 5 is the difference between the utility of subinterval break
points u;(g;) and u;(g?). The summation of the w;,’s for a criterion indicates the
weight of the corresponding criterion. The summation of w;, values for each

alternative over all subintervals and criteria is scaled to one. The piecewise marginal

utility of alternative a; can be calculated by linear interpolation for criterion g; as

follows:
Tji—l rji
gila;) — g,
Uu; (gl(aj)) = Z Wip + %W”ﬁ (215)
p=1 i Y

where gl.rﬁ (1 <m; < b;) denotes the score of the breakpoint that define the
subinterval rj;, i.e., g, < gi(a;) < gir""Jrl and w;,, is the utility of the corresponding

subinterval r;;. Finally, the overall utility of alternative a; can be written as:

n rji_l

9:(e)) - g;"
U(g) = E E Wip + i Wir; (2.16)
i=1 i Y

p:l gl i

The assignment of an alternative into a category is carried out by comparing the
overall utility of the alternative with the utility thresholds, w,, of the corresponding

category defined by the model as:

U(aj) =Zu = a4 €C
u, <U(a) <ug-y = g €C, fork=2,..,9-1 (2.17)

U(aj) <uUg_q1 = a; €(y
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This classification may result in some degree of misclassification. The method
specifies the utility thresholds (uy, ..., u4—1) and wy, values in such a way that the
classification error is to be minimized. For the assignment of alternative a; into
category k, the violation of the lower and upper bounds of the category are denoted

by aj+ and o;”, respectively and defined as:

of =max{0,u, —U(q;)}, Va;€Cpk*gq (2.18)

o

= max{O, U(aj) — uk_l}, Va; € Cr.k #1

Let f, be the number of alternatives that are assigned to category k. Then the LP for
UTADIS is

q -
Ya.cc(ot + o
Min Z aee 9 +97) (2.19)
] fr
s.t.
U(gj))—u, +0" 20 Va;€C (2.20)
Ul(a;) —u, +0t >0
(a)) = we + 9 } Va € Ck=2,..q—1 (2.21)
U(aj) —Ug—1 — 0}_ <é
U(aj) —uq1—07 <=6 Va; €C, (2.22)
Ug1— U =S, Yk=2,..,q—-1 (2.23)
z z Wy =1 (2.24)
i=1 p=1

Wy 20,017,007 20, Vi=1,..,n, p=1,..,b;, j=1,..,f fora; € C;, (2.25)

where s and ¢ are small positive constants. Constraints (2.20) - (2.22) define the
errors for the assignment of the alternatives into categories. Constraint (2.23)
enforces the threshold for a better category to be higher than that of a worse category.

Constraint (2.24) scales the summation of w;,, values over i and p.
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The LP defined by (2.19) - (2.25) estimates many parameters to find a solution. The
optimal solution will generate several basic variables and so it is typical that there can
be multiple optimal solutions (Koéksalan and Ozpeynirci, 2009). Doumpos and
Zopounidis (2004) suggest conducting post optimality analysis through redesigning
the LP with respect to near optimal or alternate optimal solutions. As a secondary

objective, they tried to maximize Zzi:_ll w;), for each criterion and u,, values for each

category. To check the deviations in the accuracy and stability of the model, Doumpos
and Zopounidis (2004) change (1) the number of alternatives in the reference set, (2)
the number of subintervals in the criteria and (3) the classification errors in the post
optimality stage. The results indicate that these differentiations significantly affect the

stability and accuracy of the model.

Koksalan and Ozpeynirci (2009) apply UTADIS to sort the global MBA programs
assuming that the preferences of the DM are consistent with an additive function. The
reference set includes 30 alternatives out of 81 alternatives. When there is no
inconsistency in the preferences of the DM, the optimal solution of UTADIS will
result in zero classification error and there may exist alternate optimal solutions in
such a case. The authors employ eight different versions of the UTADIS model in a
three-category problem of sorting the Global MBA programs. As secondary
objectives, the authors tried to maximize (1) the number of alternatives in each
category, (2) the weight of each criterion and (3) the category thresholds. Then, the
original UTADIS model is compared with these versions with respect to average
percent deviations in parameters as well as the accuracy performance of the models
with respect to the misclassification rates. The results show that the classification
accuracy of the non-reference alternatives is poor in most cases. Furthermore, there
are significant differences in the model parameters which raises question regarding

the robustness of the model parameters.
2.3.2 Entropy and relative entropy

The entropy concept was introduced by the physicist Rudolf Clausius in 1850 as a

thermodynamic measure of randomness or disorder (Zhang et al., 2011). Shannon
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(1948) defined it in information theory context as a measure of uncertainty of a
random variable. That is, the entropy, H (X), of a discrete random variable X is defined
asin (2.26).

H(X) = —ZZ=1 p(xi)log, p(xi) (2.26)

where the entropy is the amount of information required to find the outcome of a
random variable. The logarithmic base 2 is randomly chosen in this study since the
entropy values are used for comparison of the magnitudes among the alternatives and
a change from base a to base b is performed through multiplication by a constant,
logg. Let a random variable, X, have three possible outcomes, {1,2,3}, with

probabilities 1/2, 1/4, and 1/4, respectively. Then, the entropy of X is calculated as

H(X) = —llogz (l) —llogz (l) —llog2 (l) =E (2.27)
2 2) 4 4) 4 4) 2

Assume that the preference information of the DM is obtained by asking yes/no type
questions. We first ask whether X = 1 or not since its probability is higher than the
other outcomes. If the answer is no, then we ask one of the other outcomes and so we
reach the outcome in either 1 or 2 questions. The expected number of questions

required to determine the outcome of X is shown in (2.28).
1 1 3
Expected number of questions = 1 X 5 +2Xx 5=3= H(X) (2.28)

Figure 6 shows the entropy values in case of two outcomes evaluated on log base 2.
The maximum entropy is achieved when the probabilities are equal to each other
which intuitively makes sense. If there is a dominant outcome with very low/high

probability, then the entropy declines at an increasing rate.
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Figure 6. The entropy of a probabilistic event with two outcomes

Entropy has been widely used in studies that estimate the underlying preference
function of the DM. Jaynes (1957) introduced the maximum entropy (ME) principle
in case of an unknown probability distribution. According to the ME principle, the
level of knowledge can precisely be identified by the largest entropy obtained from a
probability distribution. Based on the ME principle, Abbas (2004) presents an
adaptive question-selection algorithm for ranking problems by estimating the von
Neumann and Morgenstern utility values of alternatives. Valkenhoef and Tervonen
(2016) extend the work of Abbas (2004) to rank a discrete set of alternatives in which
the DM is assumed to have a linear utility function. Both approaches require the DM
to make pairwise comparisons between alternatives progressively. The approaches
select the pair of alternatives to ask the DM that leads to the maximum reduction in
the entropy of the joint distribution of the utilities which are assumed to follow a

uniform distribution.

There are some approaches to the MCDM problems utilizing the concept of entropy.
Xiao (2020) proposes an entropy-based fuzzy MCDM approach to model uncertainty
and rank the alternatives. Karakaya et al. (2016) develop a multi-objective feature
selection approach and measure the relation between two variables based on entropy.
In another approach, Ciomek et al. (2017) estimate the reduction in entropy by
selecting pairwise questions to rank the alternatives. The authors utilize the rank
acceptability index (RAI) estimated by Monte Carlo simulations. RAI is defined as
the share of utility functions that lead to a specific rank for an alternative. The entropy

is calculated based on the RAI scores. Wu et al. (2011) use entropy to find the cross-
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efficiency scores of the alternatives as an alternative method for data envelopment

analysis.

When the number of outcomes vary, the entropy value may fail to capture uncertainty
levels. For instance, suppose that there are two alternatives to be assigned into any of
three categories. Let the possible categories that alternatives 1 and 2 can be assigned
to be {C;, C,} and {C;, C,, C3}, respectively with the corresponding probabilities of
{0.50,0.50} and {0.15,0.15,0.70}. The entropies of alternatives 1 and 2 are
calculated as 1 and 1.18, respectively. Although it is expected for alternative 1 to have
higher uncertainty, its entropy level is lower due to different number of possible
categories to be placed between the alternatives. Relative entropy, Hz (X), on the other
hand, considers the number of possible categories by dividing the entropy of an
alternative to the maximum entropy with the same number of possible categories
(Shannon, 1948). The relative entropies of alternatives 1 and 2 are calculated as 1.00
and 0.75, respectively by using the formula in (2.29). In Figure 7, an illustration of
entropy and relative entropy values for 50 alternatives with different probability
values in three-outcome case is shown. The maximum relative entropy value is one

while the maximum entropy value is log, 3 = 1.585.

- Zzzl p(xx)log, p(xk)

He(X) = T (2.29)
2
16
1l2 ”' AAAAAAAAA N
08 & - ey
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Figure 7. Entropy and relative entropy example

30



CHAPTER 3

INTERACTIVE APPROACHES FOR SORTING PROBLEMS

We present the proposed interactive approaches for sorting the alternatives evaluated
on multiple criteria. We first define the problem environment and present
mathematical models for the preferences of the DM represented by (i) piecewise linear
and (ii) monotone non-decreasing additive preference functions in Sections 3.1 and
3.2, respectively. In addition to the LP models in each function, we also present the
MIP models for the case of category size restrictions. We then provide the steps of the
algorithms for the non-probabilistic and probabilistic cases in Sections 3.3 and 3.4,

respectively as well as the benchmark algorithms in each case.

We modified the LP models developed by Bugdaci et al. (2013) and use their notation
in order to facilitate easy reading. Recall that set A consists of m alternatives
a,, a,, ..., a,, that are evaluated on n criteria and the DM is required to assign the
alternatives into g categories C;, Cs, ..., C, where C; and C, are the most and least
preferred categories, respectively. Recall that C, is the set of alternatives that belong

to the k" category. Let C, be the set of alternatives categories of which are not known.

3.1 Piecewise linear additive preference functions

In this section, we assume that the preferences of the DM are consistent with an
additive utility function where the marginal utilities of alternatives are piecewise
linear in each criterion as in UTADIS. LP1,,, and LP2,,  are the two models that
are used to define the category ranges of the alternatives for piecewise linear form
when no category size restriction is addressed in the problem. We note that rather than
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finding a single set of parameters as in UTADIS, the whole set of parameters is

considered to avoid any misclassification.

Model (LP1,,)

Min U(a;) — uy (3.1)
S.t.
S ale) -
gi\q; 9
U(a;) = Z Z . ﬁwirﬁ Va; € A (3.2)
l - gi
U(a]) > Uy, Va] € Ck, k= 1, vy q — 1 (33)
U(g)<ug1—6, Vg€ G, k=2..q (3.4)
U1 — U =26, k=2,.,q-1 (3.5)
uq_l = 1) (36)
n bi—1
Z Z (3.8)
»p=0, i=1..,np=1..,b (3.9

where § is a small positive constant that is set as 10~3. The objective of (LPlaDk) IS
to minimize the difference between the utility of alternative a, and the threshold of
the k" category. Constraint (3.2) determines the utility of each alternative based on
a piecewise linear additive function. Constraint sets (3.3) and (3.4) ensure that the
alternatives assigned by the DM are within the boundaries of their exact categories.
Constraint (3.5) guarantees that the utility threshold of a better category is higher than
that of a worse category. In constraints (3.6) and (3.7), the lower and upper limits of
the category thresholds are set in a way that the most and least preferred categories
have utility intervals. Constraint (3.8) stands for normalization of the w;,, values and
constraint (3.9) is the nonnegativity constraint. In the second model, (LP2,, ), we
retain all constraints from (3.2) to (3.9) and change the objective function to
maximize the difference between the utility of alternative a, and the utility threshold
of the k" category.
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Model (LP2,,)
Max U(a;) — uy (3.10)
s.t. (3.2)—(3.9)

In order to reflect the category size restrictions in the models, the numbers of
alternatives in categories are reflected in the mathematical models. To be able to
incorporate such restrictions, a binary variable y;, is defined in such a way that its
value is one if an alternative a; is assigned to the k" category and zero, otherwise as
in Mousseau et al. (2003). Then the problem can be solved by the following MIP

models:

Model (MIP1,,)

Min U(a;) — uy
s.t. (3.2)— (3.9),

U(a)) = u —M(L—yy), Va;€Cp, k=1,..,q—1 (3.11)
U(a) Swr +MA—yp) —e, Vg € C, k=2..,q (3.12)
q
Zyjk =1 VaeA (3.13)
k=1

m

Zy]k = Sk VCk € CS (314)
j=1

yik €{0,1},  Vjk (3.15)

where M is a large positive constant, s, = |C| is the given size of the k" category
and €S is the set of categories exact category sizes of which are known. Constraints
(3.11) and (3.12) ensure that the utility of unlabeled alternatives are within the
boundaries of a category if an alternative is assigned to the category through binary
variable y;,. Constraint (3.13) states that each alternative can be assigned to a single
category. Category size restrictions are handled in constraint (3.14). Our models are
flexible so that other types of category size constraints such as bounds or comparisons

can be easily added. In the second model, we maximize the difference between the
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utility of alternative a, and the utility threshold of the k*"category through keeping
all constraints from (3.2) to (3.9) and (3.11) to (3.15).

Model (MIP2,,)
Max U(a;) — ug
s.t. (3.2) —(3.9),(3.11) — (3.15)

3.2 General monotone additive preference functions

When the preferences of the DM are assumed to be consistent with a general additive
utility function in monotonically non-decreasing form, then there is neither
characteristic point nor subinterval that are included in piecewise linear utility
functions as in UTADIS. For general additive utility functions, the criteria scores are

ordered from least preferred to most preferred ones. Let x!, x5, ..., x,ini be the ordered
score values in criterion g; where x}, < x},,, #=1,..., m; — 1, m; < m. Recall that
the marginal utility of alternative a; in criterion g; is defined as w; (gi(aj)) where the

overall utility of a;, U(aj-), is the sum of the marginal utilities in each criterion.

Model (LP3,, )

Min U(a;) — uy

s.t. (3.3) = (3.7),

w(xh) <wi(xbiq),h=1..,m-1, i=1.,n (3.16)
ul(xi) =0, i=1..,n (3.17)

n
z u;(xhy,) =1 (3.18)
i=1
U(g) = Xisiw (gi(aj)), Va; € A (3.19)
Constraints (3.16) - (3.18) define the marginal and overall utilities of each alternative

based on an additive utility function. Constraint (3.16) guarantees that smaller criteria

scores have lower marginal utilities in each criterion. Constraints (3.17) and (3.18)
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stand for normalization, i.e., ensure that the overall utilities are within the range of
[0,1]. The overall utility of an alternative is defined as the summation of the marginal

utilities in each criterion in Constraint (3.19).

In Model (LP4at,k), we maximize the difference between the utility of alternative a,

and the utility threshold of category k including all constraints from (3.3) to (3.7) and
(3.16) to (3.19).

Model (LP4,, )
Max U(a;) — uy
s.t. (3.3) —(3.7), (3.16) to (3.19)

In order to incorporate the category size restrictions in general additive preference
functions, we add the binary constraints to (LP3,, ;) and (LP4,, ) and the resulting

MIP models are as follows:

Model (MIP3,,)
Min U(a;) — uy
s.t. (3.3)—(3.7),(3.11) — (3.19)

Model (MIP4,,)
Max U(a;) — uy
s.t. (33)=(3.7),(3.11) — (3.19)

3.3 The approach for non-probabilistic case

In this section, we present the proposed approach when the probabilistic assignments
are not allowed. We first explain how the mathematical models and the dominance
relations are used to identify the possible category ranges of the alternatives. We then
provide the steps of the algorithm for non-probabilistic case. We note that our

algorithm is explained in terms of the LP models of unconstrained sorting problem.
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The algorithm for constrained problem is similar to the algorithm for unconstrained

problem except that the mathematical models are MIPs instead of LPs.

3.3.1 The non-probabilistic algorithm

At each iteration of the algorithm, we solve LP models for each unlabeled alternative
to narrow down the possible category ranges of the alternatives. The LP models search
for the compatible preference functions to assign the alternatives into categories. If
there is no such set of parameters for a category, then this category is eliminated from
the possible category range of the alternatives. Once the models narrow down the
category ranges, we select an alternative to be asked the DM by the selection method
explained in Section 3.3.2. We feed the models with the category information of the
alternatives identified by the DM in each iteration until all alternatives are assigned to

their true categories.

The category ranges of the alternatives have no jumps, i.e., if C; and Cy., are among
the possible categories of an alternative, then this alternative can also be assigned to
Cr+1 (Greco et al., 2010). Hence, we consider the assignment eligibility of the
alternatives in a sequential order of the possible categories. Since LP1,, , and LP3,_
are minimization models, a nonnegative objective function value indicates that there
are no w;, and u; values that make the category threshold larger than the utility of the
alternative. Hence, the worst possible category of alternative a; is C,. Note that if the
objective function value in the minimization problem is nonnegative for utility
threshold of the k" category, then it will be nonnegative for the thresholds of worse
categories, i.e., k + 1 to q. Therefore, there is no need to search for the worse
categories once we obtain a nonnegative value in the minimization problem. It is
efficient to start from the best possible category when we search for the worst category

of an alternative through minimization problem.

LP2,, and LP4,,  are maximization models and a negative objective function value
shows that no w;;, and uy, values can make the utility of the alternative larger than the

category threshold. Hence, such an alternative cannot be in C;, and the best possible
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category of alternative a; is Cj, ;. If the objective function value in the maximization
problem is negative for a category threshold u,, then it will be negative for larger
thresholds as well. Thus, it is efficient to start from the worst possible category when
we search for the best category of an alternative through maximization problem. If the
objective function value in the minimization problem is nonnegative, then it is also
nonnegative for maximization problem. This suggests to skip the maximization
problem whenever a nonnegative value is obtained in the minimization problem.

Hence, we start with the minimization problem to identify the category ranges.

Definition 1. Let a, and a,, be two distinct alternatives, a,, a, € A. Alternative a,,
dominates alternative a, if and only if a, is at least as good as a, in all criteria and

better in at least one criterion.

Remark 1. Let a, and a, be two alternatives where alternative a, dominates
alternative a,. If the worst possible category of alternative a, is Cy, then the worst

category of a,, is Cyr.

Remark 2. Let a, and a, be two alternatives where alternative a, dominates
alternative a,,. If the best possible category of alternative a, is Cy, then the best

category of a,, is Cyr.

According to Remarks 1 and 2, the dominance relations between the alternatives can
be used to make further category range reductions. As in Ulu and Koksalan (2001;
2014) we utilize the dominance relations to decrease the total number of models
solved to complete the task. We check the dominance relations at the beginning of the
decision process for once and update the category ranges whenever the category range
of an alternative is narrowed down by LPs or after we ask the DM to make an

assignment.

We next provide the steps of the non-probabilistic algorithm, Agzgnr. We note that we

present and describe the algorithm for an additive utility function in piecewise linear
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form in the rest of this section. (LP1,, x) and (LP2,, ) will be replaced with (LP3,, ;)

and (LP4,, ) in case of monotonically non-decreasing additive utility function.

Recall that A is the set of available alternatives, C, is the set of alternatives whose
categories are not known and Cj, is the set of alternatives in the k" category. Let ¥
and CZ be the worst and best categories of alternative a,, respectively. We assume
that at the beginning there is no information about the categories of the alternatives,
e, Cy = A.

3.3.1.1 Algorithm Aggnr
Step 0:SetCy = A, C, =0 fork =1,...,q, C/Y =qand CE =1 foreach a; € C,.

Step 1: For each a; € Cy, setk = C£.

1.1. Solve (LP1g, ).
(i) If obj;i(a, k) = 0, set ¢}V = k. Set Ct"}’ = k for each alternative a,’ € C,
that dominates alternative a; and if CtVV = CtB, =k, let C, « C, U{ay} and
Co < Co—{ap}. If ¢V =CE =k, thenlet C, « C, U{a;}, Cp <« Cy— {a.}
and go to Step 1.3. Otherwise set k = k — 1 and go to Step 1.2.
(i) If obji(as, k) < 0and k < CV — 1, set k = k + 1 and repeat Step 1.1.
(iii) If obj;(as, k) <0and k = C}Y — 1, goto Step 1.2.

1.2. Solve (LP2g, ).
(i) If obj;(a, k) <0, set CZ =k + 1. Set CtB} = k + 1 for each alternative
a, € Cy that is dominated by alternative a, and if Ct'”y = Cf, =k + 1, then
let Cryq < Cryq U{ap}and Cy « Co — {ap}. If CY = CEB =k + 1, then let
Ci+1 < Cryp U{astand Cy « Cy — {a;}. Goto Step 1.3.
(ii) If obj;(a;, k) = 0and k > CE, set k = k — 1 and repeat Step 1.2.
(iii) If obj;(a,, k) = 0and k = C£, go to Step 1.3.

1.3. If the category range of all alternatives are reduced, then go to Step 2.

Otherwise go to step 1.1 for the next a; € C,.
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Step 2: Select an alternative a; € C, to ask the DM. The DM assigns alternative a; to
Cyr thenlet C,r « Cr U{ai} and Cy < Cy — {ai}. Set CtW = k' for each alternative
a, € C, that dominates alternative a;. Set Cﬁ = k' for each alternative a, € C, that
is dominated by alternative af. If C}7=C/, let C,r « Cv U {ay} and Cy « Co —

{a.}. If Cy, = @, go to step 3. Otherwise go to Step 1.

Step 3: Present the categories of alternatives to the DM and stop.

Co=A4C,=0

CcY = qand CE = 1 for each
alternative a; € C,

A 4

Solve (LP1g,x) and (LP24, k) Use dominance
for each alternative a, € C, relations for
and make the category range further category

reductions range reductions

\4

Calculate the assignment probabilities and
relative entropies, select the alternative
with the maximum relative entropy

A4

The DM assigns the selected
alternative af to Cyr,
let C,r « Cyr U {af},
Co « Co —{af}

Use dominance
relations for
further category
range reductions

no

ISCo =07 <

yes

[ Present the assignments to the DM ]

Figure 8. Flowchart of Aggyr
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Our non-probabilistic algorithm, Aggyr, does not require an initial reference set
established by the DM. Instead, we consult the DM iteratively. In Step 1 of the
algorithm, we define the worst and best possible categories by solving LP1,,  and
LP2,,  for each alternative whose category has not been defined yet; considering all

possible category thresholds. We also utilize the dominance relations for further
category range reductions. In Step 2, regardless of whether an alternative is assigned
to a category or not at the end of Step 1, the algorithm selects an alternative to ask the
DM. Once the DM specifies the category of the selected alternative, we update the
category information of this alternative as well as the ones that have a dominance
relation with this alternative. We keep executing the steps until all alternatives are
assigned to categories. Figure 2 presents the flowchart of the algorithm.

3.3.2 Selection of the alternative to ask the DM

Regardless of the type of the decision problem, gathering information from the DM is
an important step in the modelling process. In interactive approaches, the selection of
the questions affects the amount of information required to complete the task
(Holloway and White, 2003; Branke et al., 2017). The aim here is to derive as much
new information as possible about the preferences of the DM. Receiving the category
information of the alternatives that have high assignment ambiguity or uncertainty
may lead the model parameters to converge to their true values faster. Hence, an
uncertainty measure may be utilized to select the alternative to be asked the DM. The
assignment probabilities can provide valuable information regarding the assignment
uncertainties of alternatives. If an alternative has similar probability values for the
categories, then this alternative can be regarded as ambiguous since it is equally

probable that this alternative can be assigned to each category.

The previous probabilistic approaches on sorting problems usually assume that the
decision parameters follow a specific probability distribution such as uniform or
Gaussian distribution. The assignment probabilities are defined by the parameters of
mathematical models in Bugdaci et al. (2013) and Celik et al. (2015). These two

studies assume that the parameters follow specific distributions among their minimum
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and maximum values. Mathematical models are solved to find the boundaries of the
decision parameters. By this way, the assignment probabilities are estimated to
probabilistically assign the alternatives. Bugdaci et al. (2013) further utilize the
assignment probabilities to select the alternative to be asked the DM.

The second way of defining the assignment probabilities is to gather information
through several hypothetical assignments of the alternatives. Tervonen et al. (2009)
and Kadzinski and Tervonen (2013) hypothetically assign the alternatives based on
the parameters obtained from several Monte Carlo simulations. The random samples
of decision parameters are generated assuming uniform distribution. The assignment
frequency of an alternative in a category is transformed to the probability measure
called CAI. CAl of a category is defined as the share of hypothetical assignments that
assign an alternative to a category. That is, CAl represents the probability of belonging
to a category. One drawback of this method is that the randomly generated samples
of parameters are rejected to be used when they are not compatible with the
assignments of the DM. We introduce our model-based and simulation-based

hypothetical assignment approaches in the next sections.

3.3.2.1 Model-based hypothetical assignment approach

In simulation-based hypothetical assignment approach, the rejection rates due to the
incompatibility can cause extensive time to generate sufficient number of random
samples (Tervonen et al., 2013). Instead, we utilize a set of compatible preference
functions obtained from mathematical models that are good estimators of the category

thresholds and utilities of the alternatives to make hypothetically assignments.

We develop an ad hoc procedure to hypothetically assign the alternatives. Recall that
m is the number of alternatives and g — 1 is the number of category thresholds where
the number of categories is equal to g. In the first iteration of the algorithm, we solve
2-m-(q—1) LP models and the number of models decreases in the following

iterations either with category range reductions or assignments of the DM. (LP1,, x)

and (LP2,, ) find different U(a,) and u; values which are expected to converge to
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their true values as the algorithm progresses. When (LP1,, ;) and (LP2,, ) are solved
to consider the possible assignment of alternative a; to C,, we find the minimum and
maximum values for the category threshold, u,. Throughout the iterations the
category thresholds are expected to converge to the average of their minimum and
maximum values. Hence, we take the average of u, values found by (LP1,, ) and
(LP24, ) to define the thresholds that separate the categories. We also take the
average of U(a;) values found by the two models. We then make a hypothetical
assignment with the average values for each unlabeled alternative. Thus, each
alternative is hypothetically assigned to a category whenever the two models are

solved to identify the possible assignment of an alternative.

Lemma 1. The assignments with average U(a,) and u,; values are compatible with

the assignments of the DM.

Proof. Let alternative ap,, is an assignment of DM to category k', C,r. When
(LP14, ) and (LP2g, ) are solved, the utility of alternative ap,, will be between the
thresholds derived from the two models as in (3.20) and (3.21). Then, the average
utility of alternative ap,, will be between the average of the upper and lower
thresholds as in (3.22). ]

upt, < U(akh) <ugt (3.20)
up?, < Uakh?) <ugl? (3.21)

LP1 LP2 LP1 LP2 LP1  _ LP2
wr s, tu s, - Ulapy) +U(apyy)  wr +uys
2 o 2 2

(3.22)

Lemma 1 indicates that a compatible preference function can be derived by using the
average values of the two models. At the end of each iteration, we sum the number of
assignments in all the models solved. For instance, m- (g — 1) hypothetical
assignments are considered in the first iteration assuming that there is no initial

assignment obtained from the DM.

42



3.3.2.2 Simulation-based hypothetical assignment approach

In addition to the model-based hypothetical assignment approach, we use a
simulation-based hypothetical assignment approach to find the assignment frequency
of the alternatives. Tervonen et al. (2009) hypothetically assign alternatives by
generating 10,000 sets of parameters (profiles, thresholds and weights in ELECTRE-
TRI) using Monte Carlo simulation technique. Previous studies claim that 10,000
Monte Carlo iterations is sufficient to achieve 95% confidence (Milton and Arnold,
1995; Tervonen and Lahdelma, 2007). Kadzinski and Tervonen (2013) hypothetically
assign the alternatives by Monte Carlo simulation assuming a general monotone

preference function for the DM. Recall that x}, x5, ..., xrini are the ordered score values

in criterion g; in general monotone preference function case. Hence, the marginal
utility of m; criteria scores are generated for each criterion g;. The authors applied
their approach in a 5-criteria, 4-category and 27-alternative problem by requiring the

DM to initially assign nine alternatives to categories.

Recall that the randomly generated parameters may not be compatible with the
assignments of the DM. For instance, the estimated utility of an alternative belonging
to a more preferred category may be lower than that of an alternative that belongs to
a worse category. In such a case, the randomly generated set of parameters is rejected.
The rejection rates due to the incompatibility are expected to increase at an increasing
rate with the addition of new assignments of the DM. The authors declare that the
rejection sampling with the category information of nine assigned alternatives takes
approximately 20 seconds in a single iteration. In this study, preliminary experiments
in 8-criteria, 4-category and 76-alternative problem assuming a general monotone
preference function show that it takes hours to generate 10,000 compatible sets of
parameters when the DM assigns 10 alternatives to the categories. Hence, we do not
consider the general monotone preference functions in simulation-based hypothetical

assignment approach.

In order to apply the simulation-based approach, the preferences of the DM are

assumed to be consistent with a piecewise linear function. For hypothetical
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assignments, we generate 10,000 random sample sets with Monte Carlo simulations
assuming uniform distributions for parameters. We introduce an efficient approach to
generate 10,000 compatible sets of parameters. In piecewise linear utility function
case involving n criteria and b; subintervals for each criterion g;, total number of w;,
values generated in each sample is Y.;_; b; and the summation of the w;,, values is
equal to one as in (3.8). Rubinstein (1982) presents two random weight generation

techniques when the summation of parameters is equal to one as

Method-1: Rubinstein-1
Step 1: Generate n random variates r; from U(0, 1).
Step2: Tot =)} 1.

. =T
Step3: w; = Tor
Method-2: Rubinstein-2
Step 1: Generate n — 1 random variates r; from U(0, 1).
Step 2:  Sortr;’s in increasing order: 11,15, ..., Th_q.

Step3: wy=nr, Wy =1, =71y, .., W1 =Ty —Tpeo, Wy =1 —15,_4.

Tervonen et al. (2009) and Kadzinski and Tervonen (2013) use Rubinstein-2 to
generate uniformly distributed random numbers between zero and one. Kim et al.
(2006) perform intensive experiments to compare the two techniques. Although the
CPU time of random number generation by Rubinstein-2 is less than that of
Rubinstein-1, the difference between the CPU times of the two techniques is found to
be statistically insignificant. We modify Rubinstein-1 to generate the w;, values. The
ranges of wy, values are expected to narrow down with the addition of new
assignments by the DM. The DM may also provide ranges for these values as in
constrained sorting problems. If that is not the case, then LP5; ,, and LP6; , are solved
for each criterion g; and subinterval p to find the range of w;,, values in each iteration.
We then generate w;, values from their ranges assuming that they are uniformly
distributed within these ranges. Afterwards the w;, values are scaled to ensure that

their summation over p is equal to one for each i as in Rubinstein-1. Although the
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scaled weight values may not fall within the acceptable ranges, drawing the w;,, values

from their ranges is expected to result in higher compatibility with the preferences and

lower rejection rates.

Model (LP5; )
Min w;, (3.23)
s.t. (3.2) = (3.9)

Model (LP6; ;)
Max wy, (3.24)
s.t. (3.2)—- (3.9

After calculating the utilities of alternatives based on the generated parameter values,
u;, values are generated to define the category thresholds. In the first few iterations,
there may be categories without any alternatives assigned. In such a case, we generate
the category thresholds by uniform distribution within the utility interval of the
alternatives. When there is at least one alternative assigned by the DM or the
mathematical models in each of the consecutive categories Cj, and C, 1, u; value is
generated from uniform distribution in the range between the utility of alternative with

the highest value in Cy; and the utility of alternative with the lowest value in Cj.

Lemma 2. If alternative a, is assigned to Cj, at least one time, then Cj, is one of the

possible categories of alternative a,.

Proof. The assignment of alternative a; to C;, indicates that there is at least one set of
parameters compatible with the preferences of the DM that can assign alternative a;
to Cy. Since the mathematical models search for compatible sets of parameters, then

C, cannot be eliminated from the possible category range of alternative a;. 0

Based on the estimated utilities and category thresholds, alternatives are assigned to

the categories 10,000 times in each iteration. Lemma 2 explains the relationship
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between the assignments and the possible category range of the alternatives defined
by the mathematical models. According to Lemma 2, it is efficient to make the
assignments before solving the mathematical models. If an alternative is not assigned
to one of its possible categories, then we solve the corresponding model to make sure
that this alternative cannot be assigned to that category. By this way, we expect to

minimize the number of models solved to complete the decision task.

3.3.2.3 Relative entropy selection method

Let x;, be the number of assignments of alternative a, in category k at an iteration.
The frequency of an alternative belonging to a category is converted to a probabilistic

measure as

X
P =1) = g—— (3.25)

r=1 xtr

where y;; takes the value of one if alternative a, belongs to category k and zero,

otherwise.

The assignment probabilities can give an idea about the potential category/categories
of the alternatives. That is, if the probability of belonging to a category is much higher
than those of other categories for an alternative, then it can be inferred that the
alternative is much more likely to belong to this category. Hence, it may not be wise
to ask the DM to place such alternatives. The aim here is to derive as much new
information as possible about the preferences of the DM. Asking the most ambiguous
one may lead the model parameters to converge to their true values faster. Whenever
an alternative has similar probability values for each category, then this alternative is
selected to be asked the DM for placement. Therefore, we need to quantify the

uncertainty level of the alternatives in order to find the most ambiguous one.

The entropy concept fits well to our measurement of uncertainty about the categories

of the alternatives. It is expected to obtain more valuable information by the
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assignment of the alternatives having high uncertainty levels about the possible
categories to be placed. As stated before, probabilistic events that have different
number of outcomes can be compared with respect to their relative entropy levels. In
this study, we select the alternative with the maximum relative entropy to ask the DM
for assignment as in (3.26). To break the ties in case of equal relative entropy for
multiple alternatives, we select the one that has highest number of dominance relations

with the alternatives that have not been assigned yet as in Ozpeynirci et al. (2018).

-2 x = 1)lo =1
a; = arg max HR(aj) = arg max Zk_lp(yjk ) 92 p(y]k ) (3.26)
a;€Co a;€Co log, q

3.3.3 Benchmark algorithms for non-probabilistic case

In order to make a fair comparison, we consider threshold-based sorting algorithms
for additive preference functions as benchmark algorithms where the assignment
information from the DM is gathered progressively. We first explain the algorithm of
Bugdaci et al. (2013) as one of the benchmark algorithms. Then we define three
alternative selection techniques that are employed in our algorithm. In these
benchmark algorithms, different methods are used to select the alternative to ask DM.

3.3.3.1 Algorithm of Bugdaci et al. (2013)

The first benchmark algorithm is the non-probabilistic algorithm of Bugdaci et al.
(2013), Agy¢. The authors construct LP models to calculate the probability that the
utility of an alternative is larger than the utility threshold of a category. The alternative
that has the probability closest to 0.5 is regarded as the most ambiguous alternative to
ask the DM as in (3.27).

ai = arg min min|p(U(aj) > uk) - O.5| (3.27)

ajECO k

If the probability is equal to 0.5, then it is perceived as equally likely to have a utility
of the selected alternative that is greater or smaller than the threshold of a category.
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We convert the mathematical models of Bugdaci et al. (2013) into the MIPs in case

of category size restrictions.

3.3.3.2 Alternative selection approaches

In MCS problems, there are several approaches for the selection of the alternatives to
be assigned by the DM. Assuming a quasiconcave preference function, Ulu and
Koksalan (2014) solve LP models to find the middle most weights that can represent
the preferences of DM. Then they calculate the aggregate utilities of the alternatives
based on the middle most weights derived from the LP models. The bounds of the
categories are determined by the minimum and maximum utilities of the alternatives
that are already assigned by the DM. Hence, they propose assignment-based sorting
approach rather than a threshold-based one. If there exists an alternative having
aggregate utility outside the boundaries of the categories, then this alternative is
selected to be asked the DM. In case that there is no such alternative, then the
algorithm selects the alternative that has an aggregate utility closest to the boundary
of a category. These alternatives are regarded as the ambiguous ones in terms of

assignment tendency.

We include three alternative selection techniques that are employed in our algorithm.
Firstly, we randomly select an alternative among the unlabeled ones to be assigned by
the DM. Since there is randomization in the selection process, we randomly generate
100 samples for each problem setting and report the averages. Secondly, we use the
idea of Ozpeynirci et al. (2018) where the alternative to be selected to ask the DM is
identified by considering the alternative(s) with the highest cardinality of set of
possible categories. The authors argue that the wider the category range of an
alternative is, the more information is obtained. If there are multiple alternatives with
the highest cardinality, then the one with the highest number of dominance relations
with the rest of the unlabeled alternatives is selected. Dominance relations are
expected to provide additional improvements in the assignments of the alternatives

that are not assigned.
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The third selection method is the maximal minimax regret approach of Benabbou et
al. (2017). The minimax regret approach, proposed by Savage (1951), is usually used
to minimize the potential loss in investments that may arise when the worst-case
scenario occurs in the financial markets. The maximal regret, MR (a;, Cy), occurs due
to the incorrect assignments of the alternatives and is measured by the maximum
difference between thresholds and the utilities of the alternatives as in (3.28) where
& is asmall positive constant. The mathematical models, (LP1,, x) and (LP2,, ) give
the maximum difference between the utilities of the alternatives and category
thresholds. For each alternative, the minimum MR(a;, C;) value among the possible
categories is referred to as the minimax regret. The alternative with maximal minimax
regret is selected to be assigned by the DM as in (3.29). In case of equal maximal
minimax regret among the alternatives, an alternative with higher number of
dominance relations with the other unlabeled alternatives is selected as in Ozpeynirci
et al. (2018).

MR(a;,C,) = max max{u, — U(q),U(a;) — up_, + 6,0} (3.28)
U(aj)!uk
ai =argmax min MR(aj,Cy) (3.29)

a;j€Co crelcl cf]

The performances of our algorithms with relative entropy selection based on model-
based hypothetical assignments (Azgnry) and simulation-based hypothetical
assignments (Azgnrs) are compared against the non-probabilistic algorithm of
Bugdaci et al. (2013) (Agy¢), the random selection (Aganp), the selection method of
Ozpeynirci et al. (2018) (Agzp) as well as the maximal minimax regret selection
approach of Benabbou et al. (2017) (Agg¢) through experiments for non-probabilistic

case in Chapter 4.

3.4 The approach for probabilistic case

The assignment probabilities can give an idea about the potential category/categories

of the alternatives. That is, if the probability of belonging to a category is much higher

than those of other categories for an alternative, then it can be inferred that the
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alternative is much more likely to belong to this category. Assignment of such
alternatives based on the probabilities without asking the DM refers to probabilistic
classification (Bugdaci et al., 2013). Note that probabilistic classification of
alternatives may lead to misclassification errors as in UTADIS. However, it decreases
the cognitive burden of the DM by considering a small subset of the alternatives. In
this section, we first present the proposed probabilistic algorithm and its steps. We

then summarize the probabilistic approach of the benchmark study.
3.4.1 The proposed probabilistic algorithm

Once we define the possible category ranges of the alternatives through the
mathematical models, we sum up the frequencies of hypothetical assignments of the
alternatives and calculate the assignment probabilities. If the assignment probability
of an alternative is higher than the critical value, 1 — 7, for a category, then this
alternative is probabilistically assigned to the corresponding category. However,
when there is no assignment information obtained from the DM, the probabilistic
assignments can result in high degree of misclassification. Different than the
probabilistic algorithm of Bugdaci et al. (2013), Apgyc, We define a cut-off value to
determine the allowance of the probabilistic assignments during the decision process.
At each iteration, we calculate the average relative entropy (ARE) of C,, the set of

unlabeled alternatives as in (3.30).

2ajeco Hrl 4y
ARE = afeloc—l(]) (3.30)
0

ARE stands for the average uncertainty of the unlabeled alternatives. If ARE is one,
then each unlabeled alternative has equal probabilities over the possible categories.
We define 0.5 as the critical value for allowing probabilistic assignments. In other
words, if ARE is less than 0.5 at an iteration, then our algorithm makes probabilistic
assignments of the alternatives with higher probability values than the critical value,
1 — 1. Otherwise, we skip the probabilistic assignments at any iteration. We next

provide the steps of the probabilistic algorithm.
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3.4.1.1 Algorithm Apgent
Step0:SetCy = A,C, =0 fork =1,..,q,C/Y = qand CE =1 foreach a, € C,.

Step 1: For each a; € Cy, setk = C£.

1.1. Solve (LP1g, ).

(i) If obj;i(ay, k) = 0, set Y = k. Set Cg’y = k for each alternative a,’ € C,
that dominates alternative a, and if CtVV = Cﬁ =k, let C, « C, U{a,} and Cy «
Co—f{ap}. If CV = CE =k, thenletC, « C, U{a;}, Cy « Cy — {a;} and go to Step
1.3. Otherwise set k = k — 1 and go to Step 1.2.

(ii) If obj; (a;, k) < 0and k < CY — 1, setk = k + 1 and repeat Step 1.1.

(iii) If obj;(a,, k) <0and k = €Y — 1, goto Step 1.2.

1.2. Solve (LP2g, ).

(i) If obj3(a,, k) <0, set CE =k + 1. Set €5 = k + 1 for each alternative
a, € C, that is dominated by alternative a, and if C}7 = C5 =k + 1, then let
Cis1 < Crpr Ufapgtand Cy <« Co—{ap}. If C¥ =CEB =k +1, then let Cypq <
Cr+1 V{asland Cy « Cy — {a;}. Goto Step 1.3.

(ii) If obj;(a;, k) = 0and k > CE, set k = k — 1 and repeat Step 1.2.

(iii) If obj;(a,, k) = 0and k = C£, go to Step 1.3.

1.3. If the category range of all alternatives are reduced, then go to Step 2. Otherwise
go to step 1.1 for the next a, € C,.

Step 2: For each a; € Cy, if ARE < 0.5and p(xy =1) = 1 —1,thenlet G, « C, U
{a;}and Cy « Cy — {a;}. If C; = @, go to step 4. Otherwise go to Step 3.

Step 3: Select an alternative a; € C, to ask the DM. The DM assigns alternative a; to
C, thenlet C,» « C,r U{ai} and Cy < Cy — {ai}. Set Cg"’ = k' for each alternative
a, € C, that dominates alternative a;. Set Cf = k' for each alternative a, € C, that
is dominated by alternative af. If C}7=CF, let C;v < Cr Ufay} and Cp « Cy —

{a,}. If Cy = @, go to step 4. Otherwise go to Step 1.

Step 4: Present the categories of alternatives to the DM and stop.
51



Different than the non-probabilistic algorithm, we check whether the condition of
probabilistic assignment is satisfied in Step 2 to assign the alternatives without asking
the DM. If that is the case, then the alternatives are assigned to the categories
whenever the probability of belonging to a category exceeds 1 — 7. In Step 3, we
select the alternative with the highest relative entropy to be assigned by the DM.

Figure 9 shows the flowchart of Aprenr-

Solve the Calculate
mathematical models assignment Probabilistic Make
for each alternative probabilities assignment condition probabilistic

and make category satisfied? assignments

range reductions

and relative
entropies

A No

Ask the decision
maker to assign the
selected alternative

to its category

Are all alternatives
assigned?

Figure 9. Flowchart of Apggnr

3.4.2 Benchmark algorithm for probabilistic case

In order to test the performance of our probabilistic algorithms with relative entropy
selection (Aprentm @Nd AprenTs), the probabilistic algorithm of Bugdaci et al. (2013)
(Apgye) is used as benchmark. Apg,¢ solves additional mathematical models to find
the boundaries of the w;, and u, values. Assuming that their values show uniform
distribution among their boundaries, the difference between the utilities of the
alternatives and the category thresholds, U(a;) — u, is assumed to follow a normal
distribution based on the central limit theorem. Accordingly, they calculate
p(U(a;) = uy), the probability that the utility of alternative a; is at least as much as

the utility of the category threshold wu,.
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Note that this probability measure is different from our probability definition where
we calculate the probability of an alternative belonging to a category. To illustrate, let
alternative a, have a possible category range of {C;, C,, C5} in a four-category problem
where C; is the most preferred category. Then, in the approach of Bugdaci et al.
(2013), it must be the case that p(U(a,) = u3) = 1 since C, is not in the possible
category range. Moreover, if p(U(a;) = u,) = 0.7, then it must be the case that
p(U(a;) = u,) = 0.7 since u, < uy. In our approach, on the other hand, the
assignment probability of alternative a, to C,, p(a; € C,), is equal to zero and the

summation of the probabilities for the rest of the categories is equal to one.

Apgyi selects the alternative to be asked the DM that has the closest probability value
to 0.5 for a category as in (3.25). Such a selection process considers a single category
and ignores the distribution of probabilities among each category. For instance, let
alternative a, and a, have the category ranges of {C;,C,,C5} and {C;,C,},
respectively. Let p(U(ay) = u,) = 0.33, p(U(ay) = uy,) =0.67 and p(U(a,) =
u,) = 0.40. Then the algorithm selects alternative a, since its probability value is
closer to 0.5 than that of alternative a,. However, alternative a, has similar
assignment probability values for the three categories and hence its assignment

uncertainty may be higher than that of alternative a,.

According to the user-defined critical probability threshold, 7, probabilistic

assignments are made as follows:

e Ifp(U(ay) =uy) =1—r1,then a, is assigned to Cy;
o Ifp(U(ay) 2ux)=1—7andp(U(a,) = uk_1) < 7, then a, is assigned to Cy;

o Ifp(U(ay) =uy_q) <1, then a, is assigned to C,.

At each iteration, the LP models are solved to identify the category ranges of the
alternatives. Then, additional LP models are solved to define the probability that the
utility of an alternative is larger than a category threshold. The alternatives are
probabilistically assigned to categories and then the algorithm selects the alternative
that has a probability value closest to 0.5 to ask the DM. The assignment information

obtained from the DM is added to the LP models in the upcoming iterations.
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CHAPTER 4

COMPUTATIONAL EXPERIMENTS

We implement the proposed algorithms and benchmark algorithms on three example
problems from the literature in Sections 4.1, 4.2 and 4.3, and on randomly generated
problems in Section 4.4. For the first two problems, we make experiments on non-
probabilistic case for both unconstrained and constrained settings where in the latter
category size restrictions and initial assignment examples are considered. In the third
problem and the randomly generated problems, we consider the non-probabilistic and
probabilistic algorithms together. We assume piecewise linear preference functions in
the first and third problems whereas the second problem considers general monotone
preference functions. Finally, we incorporate each additive function in the randomly
generated problems. We use 4 GHz, 8 GB of RAM, Intel Core i7 computer to perform
the all experiments. The mathematical models are solved using CPLEX 12.5 solver.

4.1 Applications on MBA problem

Financial Times (FT) regularly announces the rankings of the MBA, executive MBA
and master programs based on several criteria such as salary % increase and faculty
with doctorates. Some criteria (e.g., alumni recommend) are announced on an ordinal
scale while the others have ratio scales. Kdksalan et al. (2010) study the 2005 rankings
of global MBA programs to implement their approach using weight ranges instead of
fixed weights. They convert the ordinal-based criteria into standardized ratio scale
using an LP. The same data is used by Kéksalan and Ozpeynirci (2009) and Bugdact
et al. (2013). We apply our algorithm to the same sorting problem of 81 MBA
programs evaluated on three main criteria: alumni career progress, diversity, and idea

generation. The 81 MBA programs are placed into three categories assuming that the
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DM has an underlying additive preference function in piecewise linear form. The w;,
and u;, values to find the true categories of the alternatives are obtained from the three
studies mentioned above. The marginal preference functions in each criterion is
presented in Figure 10. The number of subintervals is three for each criterion. For
example, the DM assigns 0.24 utility for the score of 0.2 in criterion 2 while the utility

of the score of 0.8 in criterion 3 is approximately 0.15.

0.4

03 Criterion g,

Criterion g,
0.2

0.1

u;(g,(a)))

Criterion g
0.0

0.0 0.2 0.4 0.6 0.8 1.0
9:(a;)

Figure 10. The marginal preference functions of criteria in MBA problem

Table 1 shows the w;, values for each subinterval and criterion. The w;, values are
identified to reflect different types of preference structures (Kéksalan and Ozpeynirci,
2009). The utility thresholds for categories have the following values: u; = 0.65 and
u, = 0.4. According to the underlying preference structure, 15, 47, and 19
alternatives belong to categories 1, 2, and 3, respectively. Note that we assume that
the w;, and w, values are unknown and used to identify the categories of the

alternatives that are elicited from the DM.

Table 1. w;, values that represent the DM’s preferences in MBA problem

p
i 1 2 3
1 0.06 0.18 0.06
2 0.24 0.12 0.04
3 0.06 0.09 0.15
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4.1.1 Unconstrained case in MBA problem

We first apply the algorithms on MBA programs data without any category size
restriction or initial assignments of the DM. We first provide the assignments in
iterations of Azgyrm @nd then summarize the results for all algorithms. Table 2 shows
the assignments and category range reductions made by the models as well as the
DM’s assignments including the alternative number, its category range and the exact
category. In the first iteration, there are 81 alternatives that are not placed to any
category and two thresholds separating the categories. After solving the two models,
we make a hypothetical assignment for each alternative. Since there are two category
thresholds, the algorithm checks the assignment of each alternative to categories
162 (81 x 2) times in total.

Since there is no initial assignment, the models cannot narrow down the category
range of any alternative in the first few iterations and only dominance relations
contribute to the category range reductions. In the first iteration, alternative 68 has the
maximum relative entropy score among all alternatives and it is chosen for the DM’s
assignment. The DM places it into the 3" category. The selected alternative does not
lead to any category range reduction either by models or the dominance relations.

In the second iteration, alternative 11 is selected and the DM places it into the 1%
category. Since alternative 5 dominates alternative 11, alternative 5 is also assigned
to the 1% category by the dominance check. After the third iteration, the algorithm
starts to select the alternative from narrower category range to ask the DM and this
continues until the algorithm terminates. Iteration 12 is the first iteration where the
models assign an alternative even though there is no dominance relation with the
alternatives that are previously assigned by the DM. The algorithm continues until all

alternatives are assigned to their exact categories in iteration 38.
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Table 2. Assignments of Aggyre ON MBA problem

Iter.

Assignments by the models

Category range reductions

DM’s assignments

No. C1 C> Cs {Cy, C2} {C>, C3} Alt.  Cat.range Cat.
1 68 1-3 3
2 5 11 1-3 1

7,18,19,21, 57,60, 63,65, 66, 69,
3 24,28,33,34, 70,71,72,73,75, 76, 44 1-3 2
36, 45, 52 79, 80, 81
4 52 53,59, 61, 62, 67, 74 60 2-3 2
5 24 1-2 2
6 59 2-3 3
7 63 2-3 3
1, 3, 13, 20,
8 37,38, 42 64, 77 61 2-3 2
9 46, 51, 55, 56 73 2-3 3
10 80 3 1-2 1
2,4,9, 14, 16,

1 23, 35, 39, 47 69 2-3 2
12 37,57 66, 72 32 51 2-3 3
13 77 41,48 1 1-2 1
14 54 2-3 2
15 81 2-3 3
16 64 78 18 1-2 1
17 53, 62 8 74 2-3 2
18 30 43 30 1-2 2
19 32,38, 43 31,49 58 2-3 2
20 2,4 50 14 1-2 1
21 41 2-3 3
22 55 17,27 8 1-2 2
23 7,13 34, 49 40 26, 29 35 1-2 2

26, 29, 42,

24 47 15 17 2-3 2
25 19 15, 31, 40 6, 10'2:;2’ 22, 21 1-2 1
26 45, 65 79 2-3 2
27 33,70 78 2-3 2
28 36, 76 48%:?6’ 12 1-2 1
29 9 25 16 1-2 2
30 22 46 2-3 3
31 50 75 2-3 3
32 23 10 1-2 2
33 28 1-2 2
34 6 1-2 1
35 20 1-2 2
36 27 2-3 2
37 39 1-2 2
38 67 2-3 2

We also apply the benchmark algorithms and selection methods on MBA problem.

We expect that the DM spends less effort while assigning the alternatives with

narrower category ranges compared to the ones that have wider category ranges. In
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order to compare the algorithms in terms of the assessment burden on the DM, we
introduce a new measure, the number of pairwise category decisions (PCD). Each
category range reduction by the DM is regarded as a PCD. That is, an assignment of
the DM among k categories is regarded as k — 1 PCDs. Let AS,, be the number of
assignments of the DM among k possible categories. Total number of PCDs in a g-

category problem is defined as follows:

q
PCD =) (k—1)*AS (4.1)
,Z ;

If, for example, the number of DM’s assignments among two and three categories are
a and S, respectively, then the number of pairwise category information required from
the DM is calculated as « + 2. We note that for an alternative the probabilities of
belonging to categories may differ. However, in this study, regardless of these
probabilities we focus on the number of possible categories that the DM needs to

select in order to place the alternative.

The numbers of assignments by each algorithm are reported in Table 3. Agp is the
worst performing algorithm among six algorithms. The alternatives, i.e., the MBA
programs, in the first and third categories have higher number of dominance relations
than the ones in the second category. This causes Ayzp to ask the DM alternatives
from the first and third categories in the early iterations. However, approximately 60%
of the alternatives belong to the second category in MBA programs dataset. Agzp
could not narrow down the category ranges of the alternatives in the second category
until 24 alternatives are assigned by the DM. That is why the selection method of
higher cardinality causes to frequently ask the DM among wider category ranges and
this results in poor performance compared to the other algorithms including the

random selection.

Algorithms Agge, Agyc, Arentm aNd Agpyrs perform better than A 4yp in terms of
the assignments made by models. A, assigns one more alternative than Az while

requiring higher computational effort than Agg;. Since no preference information is
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imposed to the LPs in the first iteration of each algorithm, the objective function
values are identical for each alternative. That is why the regret scores of all
alternatives in the first iteration are same in Aggg, i.€., the selection method could not
identify an alternative and hence, an alternative is randomly selected to be assigned
by the DM. As in Ag4np, We generate 100 random samples for the selection process
to break the ties in the regret scores of Agzg;. The average of the assignments based

on 100 random samples is reported in Az np and Agg-

Table 3. Performances of the algorithms in MBA problem - unconstrained case

Assignments  DM’s assignments Number of CPU time
. Number of -
Algorithm by the Among?2 Among 3 PCDs models (in
models  categories categories solved  seconds)
Aranp 25.5 45.8 9.7 65.2 5912 89
Asgp 16 27 38 103 9491 172
Apse 40 33.9 7.1 48.1 4882 86
Apyi 41 34 6 46 8261 140
Argnra 43 35 3 41 3893 79
Argnrs 46 32 3 38 1147 221

The best algorithms in terms of the number of questions asked are our algorithms,
Arentm @and Agenrs. The two algorithms tend to select the alternatives to ask the DM
from the narrower category ranges. Thus, they require less pairwise category
information from the DM. Moreover, these two algorithms solve the least number of
models to complete the classification among all algorithms. Aggyra requires the DM
to assign three more alternatives than Azgyrs While solving higher number of LP
models than Azgynrs. HOwever, parameter generation process of Azgyrs Causes the

algorithm to have longer CPU time than the other algorithms.

Figure 11 shows the number of rejections among the generated sets of parameters and
their CPU time in each iteration. At the beginning of the fifth iteration, each category

! Due to round-off differences in the dataset, the results obtained by the algorithm of Bugdaci et al.
(2013) are not identical to the results presented in Table 2 of Bugdaci et al. (2013).
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has at least one alternative assigned either by the DM or the models, hence the
algorithm starts to reject the randomly generated set of parameters due to
incompatibility with the assignments of the DM. The parameter generation process
starts to take longer than one second when the number of rejections increases to
approximately 200,000. After the DM assigns 25 alternatives to categories, the
number of rejections follow a steady path throughout ten more iterations. In general,
the parameter generation process takes 148.88 seconds in total while the rest of the
algorithm takes 72.28 seconds which is slightly less than the CPU time of Aggnrum-

Figure 11. Rejection rates of Aggyrs in MBA problem — unconstrained case
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4.1.2 Constrained case in MBA problem

In this section, we consider the category size restrictions and initial assignments in
MBA problem. As category size constraints, the sizes of the categories are given by
the DM. Moreover, the DM initially assigns alternatives 14 and 21 to the first
category, alternatives 10 and 79 to the second category, and alternatives 50 and 56 to
the third category. In order to shorten the process, we utilize the dominance relations
for narrowing down the possible assignments before solving any MIP model in each

algorithm.

The performances of the algorithms are reported in Table 4. The initial assignments
of the DM are reported in the assignments among three categories. It can be observed

from Table 4 that there is a significant improvement in each algorithm with the
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inclusion of category size restrictions. Az 4np and Ag,p have similar performances in
terms of the number of assignments and PCDs. In Ay,p, asking the alternatives with
higher dominance relations contribute to the category range reductions of the

unlabeled alternatives. Hence, the number of MIPs solved in Agp is less than that of

ARAND'

Table 4. Performances of the algorithms in MBA problem - constrained case

DM’s assignments Number of

Algorithm tﬁ, stsrllgnnr:;edn;s s Among2  Among 3 NUF?g:bS; of models (icripsgcgrzr(]ji)
categories  categories solved
Agranp 43.6 30.4 7 44.4 1992 442
Apzp 45 28 8 44 1636 348
Arga 56 18 7 32 1136 307
Agui 54 20 7 34 2717 555
Arentm 60 15 6 27 1048 210
Agents 52 23 6 35 548 226

Aggc assigns two more alternatives than Ag, ¢ while solving less models. Since there
are initial assignments of the DM, the regret scores of the alternatives differ starting
from the first iteration. Therefore, it is not required to generate samples for the
selection process in Aggs. Arpnts requires the DM to assign higher number of
alternatives than Agge and Agye While solving less number of models. Aggyra, ON
the other hand, performs better than the benchmark algorithms and Agzgyrs in terms
of the amount of information obtained from the DM. Although Aggpnrs takes a
considerable amount of time in generating random set of parameters, the algorithm
solves less number of models and hence, the CPU time of the two algorithms Azgyrum
and Azpnts are close to each other. We note that the computational time is higher for
each algorithm when compared to the unconstrained version as MIPs are solved
instead of LPs.

4.2 Applications on bus revision problem

In this section, we test the non-probabilistic algorithms on the bus revision problem

that is used by Greco et al. (2010) and Ozpeynirci et al. (2018). A transport company
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is responsible for the classification of 76 buses into four categories in order to identify
whether the buses need major, minor or no revision. The buses that need major
revisions are either in the worst (C,) or lower-intermediate (C;) technical state
whereas the buses that require minor revisions are in the upper-intermediate (C,)
technical state. The most preferred category, (C;) is the good technical state where
the buses do not need any revision. The buses are evaluated on eight criteria defined
in Table 5. There are four cost-related criteria where the lower scores are preferred to

higher scores, and four gain-related criteria where higher scores are favored.

Table 5. Descriptions of criteria of bus revision problem

Criterion Name Type
91 Maximum speed Gain
9 Compression pressure Gain
93 Blacking Cost
Ja Torque Gain
Js Summer fuel consumption Cost
Je Winter fuel consumption Cost
97 Oil consumption Cost
Js Horse power Gain

We assume that the preferences of the DM are consistent with a monotone non-
decreasing additive utility function rather than a piecewise linear function. We solve
LP3,,, and LP4,,  for defining the possible assignments of the alternatives when
no category size restriction is imposed to the problem setting. In constrained problem,

we solve MIP3,, , and MIP4,_, to identify the category ranges of the alternatives.

4.2.1 Unconstrained case in bus revision problem

Table 6 summarizes the performances of each algorithm for the bus revision problem
without any category size restriction or initial assignments of the DM. Note that
Agrgnts 1S not applicable in bus revision problem with general monotone case, thus,

we report the results of five algorithms. Ag,p and A, consult the DM more to assign
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the alternatives when compared to other algorithms. Moreover, the number of models
solved in these two algorithms is much higher than that of other algorithms. Az snp
and Agg¢ perform similarly in terms of the number of questions asked and the number
of models solved. However, A vp Selects the alternatives from narrower category
ranges and hence, results in less number of PCDs. Aggyra tends to select alternatives
from narrower category ranges and asks the least number of questions to the DM with
a slight increase in the number of models solved compared to those of Az,np and
Agrgc- The CPU times of the algorithms are in parallel with the number of models

solved.

Table 6. Performances of the algorithms in bus revision problem-unconstrained case

. DM'’s assignments Number  CPU time
Assignments Number of models (in
Algorithm by the models Among2  Among3  Among4  ofpcps
categories categories categories solved  seconds)
Awan 273 24.2 14.9 9.6 82.8 6574 135
Avzp 17 9 21 29 138 11067 210
A 27.1 22.1 156 11.2 869 6533 133
Apys 21 15 16 24 119 12046 241
- 29 29 12 6 71 6758 135

4.2.2 Constrained case in bus revision problem

We assume the sizes of the categories 1 to 4 are given by the DM as 14, 18, 22 and
22, respectively and six alternatives are initially assigned to categories by the DM as
in Ozpeynirci et al. (2018). Table 7 shows the iterations of Aggyr On bus revision data
with category size restrictions and initial assignments. The assignments to four
categories at iteration zero are the initial assignments of the DM. Three alternatives
are assigned to the 4" category and one alternative is assigned to each of the other
categories. Since six alternatives are initially assigned by the DM, 70 alternatives are
left to be assigned to their exact categories. In the first iteration, all alternatives in the

15t category are identified through the MIP models. Hence, the 15¢ category is
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eliminated from the range of possible categories for the rest of the alternatives. 31
alternatives are assigned by the models in the first iteration. Alternative 21 has the

maximum relative entropy score and is selected to be assigned by the DM.

Table 7. Iterations of Aggyr On bus revision data

lter Assignments by the models Category range reductions DM'’s assignments
No. Ci Cz Cs Ca {C2,Cs} {C2Cs3Csy {C5 Cs} Alt. Cat range Cat.
0 33 64 13 2,67,70
7, 18,29, 4,5, 32, 6, 10, 14,
i; gg 22 gi 1, 15, ég gi g; 16, 21, 25, 3,8,11, 12,
1 Ty 'L 17,20, S0 S 31,43,52,  9,26,38,68 24,28,36, 21 2-3 3
57,61, 54,56, 29 40, 45, 47, 58 73 46 53 66
65,71, 59,73, 48, 50, 60, ' T
72,76 74,75 62, 63, 69,
25, 53,
2 58 26, 38 8 3-4 3
3 31 2-3 3
11, 26, -
4 38 52 2-3 2
5 9 2-4 2
6 16 2-3 2
12, 24,
7 28, 36, 3 3-4 4
46, 66
8 68 43 2-3 3

After the DM assigns alternative 21 to the 37¢ category, the MIP models assign three
alternatives to Category 3 and the possible categories of two alternatives are reduced.
Then the DM assigns alternative 8 and 31 to the 3" category and the MIPs assign
three more alternatives to the 3¢ category. Afterwards, three alternatives are assigned
to the 2"*¢ category by the DM. In iteration 7, the DM assigns alternative 3 to the 4"
category which reaches the category size limit with 22 alternatives. The elimination
of the 4" category leads to the assignment of six alternatives to the 3"¢ category.
After the DM assigns alternative 43 to the 3"¢ category, the remaining alternative 68

is automatically assigned to the 2™¢ category and the algorithm terminates.

The assignment performances of each algorithm are reported in Table 8. Since the 15¢

category is eliminated from the range of possible categories at the beginning of the

first iteration, the DM’s assignments among four categories in the fifth column include
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the initial assignments. A, performs worse than the other algorithms in terms of the
information obtained from the DM and the computational effort. Agsnp and Agzp
have similar performances in terms of the number of assignments. A ,np Selects the
alternatives from the narrower range, hence it outperforms Ag,p in terms of the
number of PCDs.

As in the MBA problem, no random sampling is required in Agg; Since initial
assignments lead to different regret scores for each alternative in each iteration.
Arentm @nd A ask the same number of questions with the same category ranges.
The reason for Aggg to solve less number of models is that Agg. eliminates the 4"
category from the possible categories of the unlabeled alternatives in the second
iteration whereas Aggnry does this in iteration 7. This is also reflected in the CPU

times of the two algorithms to complete the task.

Table 8. Performances of the algorithms in bus revision problem - constrained case

Assignments DM’s assignments Number ol;llrjnrgggL CPL(Ji:me
Algorthm by the models 2R tegories aategories ° PP solveq _ seconds)
Aganp 58.9 9.8 1.3 6 30.4 310 71
Apzp 59 7 4 6 33 353 74
Arga 62 7 1 6 27 206 45
Agui 55 12 3 6 36 1328 254
ArentM 62 7 1 6 27 296 64

4.3 Applications on Energy Trilemma Index problem

We apply the non-probabilistic and probabilistic algorithms on energy data without
any category size restrictions or initial assignments. We assume that the preferences
of the DM are consistent with a piecewise linear preference function. In cooperation
with the global consultancy company, Oliver Wyman, the World Energy Council
(WEC) yearly announces the Energy Trilemma Index (ETI) to demonstrate the energy
performance of countries (WEC, 2019). In the index data announced in 2019, four

main criteria are used to measure the energy performance of 128 countries where three
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criteria (energy security, energy equality and environmental sustainability) are
directly related to energy and one criterion is related to the general condition of the

countries.

Many sub-criteria play role to generate the four main criteria values. Import
dependency, electricity generation diversity and energy storage capacity measures are
used to measure energy security. The second criterion, energy equity, is measured
using access to electricity and clean cooking, electricity prices and gasoline and diesel
prices. In environmental sustainability, factors such as energy density, low carbon
electricity production and per capita carbon dioxide (CO2) emission criteria are used
as sub-criteria. Macroeconomic stability, effectiveness of the government and
innovation capability are some sub-criteria to represent the general country situation.

In Figure 12, three energy-related criteria are shown in form of triple trivet.

EMERGY
SECURITY

ENVIROMNMEMNTAL ENERGY
SUSTAIMABILITY EQUITY

Figure 12. The triple trivet of the ETI (WEC, 2019)

WEC calculates the aggregate score of the countries by using fixed weights, 30% for
each of the three energy-related criterion and 10% for the general condition criterion.
128 countries are ranked based on their aggregate scores. WEC also assigns countries
into four categories each of which includes 32 countries. The first category involves
the countries with the highest energy scores while the fourth category includes the
countries with the lowest energy performance. The classification of the countries
based on their enegy performances plays an important role in the assesment of the

sustainability of national energy policies.
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Table 9. w;;, values that represent the DM’s preferences in ETI problem

p
i 1 2 3
1 0.17 0.09 0.04
2 0.07 0.14 0.09
3 0.10 0.07 0.13
4 0.05 0.03 0.02

When looking at the minimum and maximum scores in the criteria, the range in the
energy security is [30,79] while the scores in the energy equity are in the range of
[5,100]. In all criteria, the scores are scaled to the range of [0,1] with the lowest score
being zero and the highest score being one. We use the scaled data of ETI problem to
apply the proposed and benchmark algorithms. We use three subintervals to represent
the preferences of the DM in each criterion. Table 9 shows the w;, values for each
subinterval and criterion in ETI problem. The marginal preference functions in each
criterion is presented in Figure 13. The sum of w;, values in each energy-related
criterion is set as 30% and the total weight of the fourth criterion is set to 10%. wy,
values are determined in a way that the weights of different subintervals in each
energy-related criterion are higher than those of other subintervals. For example, the
weight of the first subinterval in the first criterion is higher than that of other
subintervals while the weights of the second and third subintervals are higher in the

second and third criteria, respectively.

0.30
0.25
0.20
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Figure 13. The marginal preference functions of criteria in ETI problem
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In order to find the categories of the alternatives, the category thresholds are
determined as u; = 0.73, u, = 0.60 and u; = 0.47. According to the category
thresholds and the aggregate utility of the alternatives calculated with respect to the
preference structure of the DM presented in Figure 13. 28, 33, 36 and 31 alternatives
are assigned to the first, second, third and fourth categories, respectively. In Table 10,
the countries in each category are presented in a decreasing order. For example,
Switzerland is the country with the best energy performance in the first category,

while Australia is the worst in energy performance in the same category.

Table 10. Country classifications based on energy performance

Cat. Countries

Switzerland, Luxembourg, Denmark, Sweden, UK, Austria, France, Norway, Netherlands,
C, | Finland, Iceland, Slovenia, New Zealand, Germany, United States, Ireland, Italy, Spain, Canada,
Uruguay, Czech Republic, Hungary, Belgium, Israel, Slovakia, Croatia, Hong Kong, Australia

Latvia, Argentina, Japan, Portugal, Romania, Malta, Estonia, Singapore, Korea, Lithuania, Costa
Rica, Bulgaria, Brazil, Mexico, Greece, Venezuela, United Arab Emirates, Russia, Qatar,
Panama, Ecuador, Chile, Cyprus, Mauritius, Colombia, Brunei, Oman, Poland, Kuwait,
Azerbaijan, Malaysia, Peru, Armenia

G

El Salvador, Bahrain, Montenegro, Paraguay, Turkey, Kazakhstan, Saudi Arabia, Ukraine,
Namibia, Thailand, Northern Macedonia, Sri Lanka, Trinidad and Tobago, Georgia, Iran,
C; | Indonesia, Serbia, Tunisia, the Philippines, China, Guatemala, Albania, Morocco, Bolivia,
Bosnia and Herzegovina, Angola, Lebanon, Algeria, Kenya, Myanmar, Egypt, Botswana,
Gabon, Ghana, Vietnam, Irag

Zambia, Tajikistan, Honduras, Nicaragua, South Africa, Jordan, Eswatini, Ivory Coast,
Cambodia, Madagascar, Malawi, Cameroon, Pakistan, Mozambique, India, Zimbabwe,
Mauritania, Tanzania, Moldova, Bangladesh, Ethiopia, Mongolia, Jamaica, Dominican
Republic, Senegal, Nigeria, Benin, Chad, Congo, Nepal, Niger

4.3.1 Non-probabilistic case in ETI problem

Table 11 shows the assignment performances of the algorithms in the ETI problem
for the non-probabilistic case. Ayzp and Agnp have similar assignment performances
while Agzp selects the alternatives to ask the DM among wider category ranges. Agy .
on the other hand, performs better than Ay,p and Aganp. HOowever, the number of
models solved in Ag,¢ is about 50% more than the two algorithms. Aggg, Arentm
and Aggnrs elicit less amount of assignment information from the DM when

compared to the other algorithms. Agg; asks the DM two more assignments than
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Arentm @and Aggnrs While the number of models solved by Agg; and Aggnra 1S Close
to each other. Our algorithms, Aggnra @nd Agenrs require the DM to assign the same
number of alternatives. Azgnrs Selects the alternatives to ask the DM among narrower
category ranges than Agzgnrm and this is reflected in the number of PCDs.
Furthermore, AgzgnTs Solve less number of models to define the category range of the
alternatives since the algorithm first makes hypothetical assignments and then solves
models if necessary, i.e., if no hypothetical assignment is made in a category.
However, Aggnrs takes excessive amount of time to complete the task due to random

data generation process.

Table 11. Performances of the algorithms for non-probabilistic case in ETI problem

Assignments DM’s assignments Number of  CPU
by the Number of models  time (in
Algorithm y Among2  Among3  Among4  pCDs
models categories  categories  categories solved  seconds)
Aranp 48.4 56 15.3 8.3 1115 16474 318
Aozp 47 45 11 23 125 15651 285
Ape 59 50 12 7 95 25231 514
Agrge 65 41 16 6 91 15642 294
Argnrar 67 48 9 4 78 15369 289
- 67 54 5 2 70 3676 6520
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Figure 14. Rejection rates of Aggyrs for non-probabilistic case in ETI problem
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Figure 14 shows the iteration based number of rejections and their corresponding CPU
times in randomly generated sample set of parameters when Aggyrs IS applied in ETI
problem. The number of rejections reaches to a million in iteration 28 of Aggynrs While
it takes 5 seconds to compete the data generation process. The rejection rates continue
to increase until iteration 48 where the sample generation process takes 326.5 seconds.
Afterwards, the number of rejections starts to decrease while the CPU times stay at a

certain level.

In Figure 15, ARE values are given throughout iterations of Azgyry In the ETI
problem for the non-probabilistic case. Having a score of 0.73 in the first iteration,
ARE suddenly falls to 0.53 with three assignment information received from the DM.
After making a sharp rise to 0.63, it follows a downward trend with small increases in
some iterations. In the 15" iteration, it is seen that ARE value is below 0.50. After
moving in the 0.45-0.50 range, it continues the downward trend and reaches the zero
level in the 49™ iteration. In the rest of the iterations, each unlabeled alternative is
hypothetically assigned to a single category and hence ARE values remain at zero.

ARE
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Figure 15. ARE values throughout the iterations in Aggyra In ETI problem

4.3.2 Probabilistic case in ETI problem

In the probabilistic case, the alternatives are assigned to categories when the

assignment probability exceeds a predetermined threshold value, t. The proposed
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probabilistic algorithms, Apgenrtm @Nd Aprents allow the probabilistic assignments
when ARE value is less than 0.5. Aprentam, Aprents @nd Apgye are applied on ETI
problem for different T values in the next section. Then we consider the case of no t

value and represent the results of Apggyry and Aprents in Section 4.3.2.2.

4.3.2.1 Probabilistic assignments with different T values in ETI problem

Table 12 shows the probabilistic and non-probabilistic assignments in iterations of
Aprentm N case of T = 0.05 in ETI problem. The probabilistic assignments are
presented in italic font while misclassified alternatives are shown in bold font. ARE
values and the assignments of the DM’s are given for each iteration. For the sake of

brevity, the category range reductions are not presented in Table 12.

In the first eight iterations, the possible category ranges are narrowed down by the LP
models. Three alternatives are assigned to their exact categories by the models in the
o' jteration. It is seen that ARE falls below 0.5 for the first time in 15" iteration. This
shows that the necessary condition for making probabilistic assignments is met. Since
T = (.05, alternatives having assignment probabilities of at least 0.95 are assigned
probabilistic. ARE of the 19 alternatives assigned probabilistically is around 0.12 in
the 15" iteration. Hence, the removal of these alternatives from the system causes a
rise in the ARE value in the upcoming iteration. The probabilistic assignments are
performed in the 28", 371" 40" and 43" iterations. In the 40" iteration, alternative 49
was probabilistically assigned to the second category while this alternative belongs to
the first category. The second misclassification is made in the last iteration with

alternative 45.

Assignment performances of the probabilistic algorithms, Apg,c, Aprentm and
Aprents are presented for different t values in the ETI problem in Tables 13, 14 and
15, respectively. In order to compare the probabilistic case with the non-probabilistic
case, the assignment performances of the non-probabilistic algorithms are given as
well. The number of assignments (i) by the models, (ii) made probabilistically and

(iii) by the DM are reported in separate columns. The number of misclassification
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errors and their distributions among the categories are given in a way that if an
alternative in the first category is assigned to the second category, then this is recorded

in the first category as a misclassification error.

Table 12. Assignments of Apggnra IN ETI problem, T = 0.05

Iter. Assignments made probabilistically or by the models DM’s assignments
No. C; C, Cs C, ARE Alt. Range Cat.
1 0.73 3 1-4 3
2 0.67 32 1-3 1
3 0.61 22 1-4 4
4 054 121 1-4 2
5 0.63 67 1-4 3
6 056 84 3-4 4
7 058 101 1-3 2
8 0.55 69 1-2 1
9 113 12, 88 055 52 2-4 4
10 054 33 2-4 4
11 0.54 1 2-4 3
12 053 94 2-3 2
13 055 51 1-2 1
14 112 051 124 1-2 1

7,40, 41, 44, 10, 26, 39, 77,
15 58, 85, 86, 16 78,89,93,104, 049 107 1-2 1
108, 122 115, 128
16 0.58 24 2-4 3
17 0.52 9 2-4 3
18 0.52 92 2-3 2
19 0.51 65 2-3 2
20 35 0.51 55 3-4 3
21 0.51 5 2-3 2
22 0.52 28 1-2 1
23 50 0.52 66 1-2 2
24 0.51 37 1-2 2
25 123 18, 25, 76 056 57 1-2 1
26 56 118 0.55 62 2-3 3
27 54 0.55 19 3-4 4
8,17, 23, 29,
28 30,91,110 34,46,64,75,  2,13,105, 117 20,59, 74 0.48 4 1-2 2
98, 100, 125
29 0.62 116 2-3 3
30 0.6 61 3-4 4
31 0.58 6 1-2 1
32 053 42 3-4 3
33 0.52 102 2-3 2
34 052 119 2-3 3
35 90 055 96 2-3 2
36 14 0.53 60 1-2 2
27,68, 73, 43, 47, 53, 80,
37 21 106 97,103, 111 38,81 0.47 79 2-3 3
38 0.62 63 3-4 3
39 0.5 114 3-4 4
40 11 49,72 82, 95, 120, 126 48,71, 87 0.37 99 1-2 2
41 0.74 36 2-3 3
42 0.63 127 3-4 4
43 83 31,45,70,109 0.31 15 3-4 3
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A new measure, the number of category misclassifications (CMs), is introduced to
check how much a probabilistic assignment is misclassified. Each misclassification
of one category, regardless of being assigned to lower/upper category, is counted as
one CM. For example, if an alterantive belongs to the first category and
probabilistically assigned to the third category, then this is regarded as 2 CMs. Finally,

the correctly assigned alternatives among the probabilistically assigned ones are

presented.
Table 13. Performance of Apg;¢ in ETI problem
Assignments Dist. of errors ~ # of % of #of  CPUtime
#of i of correct correct models (in
models prob. DM errors CMs ¢, C, C; C, assign. assign. solved  seconds)
Non= g9 L e9 - T ..o - 25231 514
prob.
0.05 29 36 63 0 0 0 0 0 O 36 100.0 21863 465
010 14 54 60 0 0 0 0 0 O 54 100.0 20218 427
015 17 57 54 0 0 0 0 0 O 57 100.0 17642 373
0.20 8 71 49 3 3 2 1 00 68 95.8 16061 339
0.25 8 81 39 8 8 2 2 4 0 73 90.1 10540 225
0.30 3 91 34 10 10 5 3 2 O 81 89.0 9119 193
0.35 0 105 23 14 14 0 7 7 O 91 86.7 6350 135
0.40 0 114 14 27 27 0 21 3 3 87 76.3 2941 63
0.45 0 122 6 37 37 0 33 4 0 85 69.7 1318 27
0.50 0 128 0 69 87 0 33 36 0 59 46.1 798 15

When 7 value is 0.05 in Apgy¢, Six alternatives are probabilistically assigned to their
correct categories. When t value is 0.10 or 0.15, less assignment information is
obtained from the DM while all probabilistically assigned alternatives are correctly
assigned to their categories. When t is 0.20, more than half of the alternatives are
probabilistically assigned while three of them are assigned to wrong categories. As
the T value increases, the number of errors increases with the number of probabilistic
assignments. In case of 7 = 0.35, 91 of the 105 alternatives assigned probabilistic
were assigned to their correct categories and a total of 14 incorrect assignments were
made by assigning alternatives - that are actually in the second and third categories -
to the first and fourth categories, respectively. Since Ay, calculates the probability
that the utility of an alternative is greater than the category thresholds, the probability
value of an alternative in at least one category is greater than 0.50. For this reason,

when t = 0.50, all alternatives are probabilistically classified without asking the DM.
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According to the probability values, 79 alternatives are assigned to the first category
while the remaining 49 alternatives are assigned to the fourth category. This resulted
in misclassification of all alternatives in the second and third categories. Moreover,
the misclassified alternatives deviate exactly one category for t values lower than
0.50. When 7 = 0.50, the number of CMs is higher than the number of errors
indicating that there are alternatives that deviate more than one category in

misclassifications.

Table 14. Performance of Apggy7am IN ETI problem

Assignments Dist. of errors  # of % of #of  CPUtime

del b i of g,&f correct correct models (in
models prob. DM errors S GG GG assign. assign.  solved  seconds)

Nom-— g7 . a1 - - o oo o - 15369 289
prob.
0.05 21 64 43 2 2 1 0 1 0 62 96.9 13860 285
0.10 14 74 40 3 3 0 1 0 2 71 95.9 13050 247
0.15 18 69 41 4 4 0 1 1 2 65 94.2 13158 258
0.20 12 76 40 4 4 0 0 3 1 72 94.7 13061 252
0.25 7 93 28 5 5 2 2 1 0 88 94.6 10580 202
0.30 6 94 28 6 6 1 3 1 1 88 93.6 10404 198
0.35 6 104 18 9 9 0 5 3 1 95 91.3 9782 185
0.40 6 100 22 4 4 3 0 1 0 96 96.0 9621 182
0.45 6 9 23 5 5 1 0 4 0 94 94.9 9337 173
0.50 5 108 15 10 10 1 2 7 O 98 90.7 8904 165

The assignment performance of our probabilistic algorithm, Apgrenra 1S Shown in
Table 14. When 7 is 0.05, 64 alternatives are probabilistically classified while two of
them are incorrectly assigned to their categories. The DM requires to make 43
assignments in Aprgyry While the number of DM’s assignments in Apgye is 63. In
terms of the number of DM’s assignments and the probabilistic assignments, the case
of T = 0.05 in Apgenra IS Similar to the case of = 0.25 of Apg,¢ Where there are
eight classification errors. When 7 value varies between 0.10 and 0.20, the number of
DM’s assignments and error rates follow a similar pattern. When t value is 0.25 and
0.30, the assignment information obtained from the DM decreases while the number
of errors is limited to five and six. When 7 value is 0.40 and 0.45, the number of errors
decreases with an increase in the assignment information obtained from the DM. In
the case of 7 = 0.50 where the algorithm makes the highest number of probabilistic

assignments, all alternatives are probabilistically assigned in the 15" iteration when
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ARE value falls below 0.5 for the first time. In terms of the number of CMs, each

alternative deviates exactly one category in misclassifications for all 7 values in

APRENTM '

Table 15. Performance of Apgenrs in ETI problem

Assignments Dist. of errors # of % of # of CPU

#of - #of correct correct models time (in
models prob. DM errors CMs ¢, C, C; C, assign. assign. solved seconds)

Non- g7 . e - -

prob.

0.05 40 49 39 2

0.10 38 52 38 3

0.15 33 60 35 4

0.20 30 65 33 7
8
9
9

- - 3656 6520

47 95.9 2604 406
49 94.2 2568 323
56 93.3 2438 193
58 89.2 2372 122
57 87.7 2370 110
58 86.6 2317 87
61 87.1 2227 67
63 85.1 2118 46
64 85.3 2092 44
65 84.4 2067 42

0.25 30 65 33
0.30 30 67 31
0.35 30 70 28
0.40 30 74 24 11 11
0.45 30 75 23 11 11
0.50 30 77 21 12 12
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The number of misclassifications in Apggnrs 1S Similar to that of Apggyra fOr low
values. ARE falls below 0.5 for the first time in 21% iteration in Apggyrs Whereas it is
the 15" iteration in Apggyry When ARE value falls below 0.5 for the first time. Hence,
the number of assignments of the models in Apggnrs 1S higher than Apgpnray While
the number of probabilistic assignments is lower in Apggnrs. The number of DM’s
assignments stay at a certain level due to the probabilistic assignments, hence, there
is an enormous decrease in the CPU times in Apgrgnrs When compared to the non-
probabilistic case. Lastly, Aprenrs correctly assign the all alternatives in the second
and fourth categories in all T values. The most common misclassification is made
among the alternatives in the third category as in Apgrgnrm- AS IN Aprenty, the

number of CMs is equal to the number of errors for all T values in Aprenrs-

4.3.2.2 Probabilistic assignments without any T value in ET1 problem

In probabilistic algorithms, probabilistic assignments are made when the probability

values are higher than a certain 7 value. If the DM wants to proceed with providing
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the least amount of assignment information, then one can choose a t value close to
0.5. In another case, the DM may request assignments with minimum number of
classification errors and in this case a t value close to zero can be selected. In some
sorting problems, the DM may not determine any t value. In such a case, we suggest
to use relative entropy measure to select the alternative/s that will be probabilistically
classified. When the ARE falls below 0.5, the alternative/s with the lowest relative
entropy are probabilistically assigned to the categories regardless of the probability

values. Here, we aim to assign the alternatives with the lowest assignment uncertainty.

Table 16. Performances of Apgrenrm @Nd Aprenrs Without T value in ETI problem

Assignments 4of _ Dist.oferrors # of % of # of CPU
Alg. correct correct models time (in

mod. prob. DM €rors ¢, ¢, C3 C, assign. assign. solved  sec.)
Aprent 19 65 44 1 1 0 0 O 64 985 14423 282

Apenrs 38 43 47 0 0 0 O O 43 1000 2865 1648

The proposed method without t value has been applied by Aprgnrm @Nd ApgrenTs IN
the ETI problem. Table 16 shows the assignment performances of the two algorithms.
It can be seen that the two algorithms yield similar assignment performances with
their corresponding cases where t = 0.05. Apgrgnrs a@ssigns all alternatives in their
correct categories whereas there is one misclassification in Apggyry. Of the 65
alternatives assigned probabilistically in Apgregnry Without T value, 63 of them were
hypothetically assigned to only one category resulting in zero relative entropy value
and an assignment probability of one. The assignment probabilities of the other two
alternatives are 0.98 and 0.99 in Aprgntm- Aprents: ON the other hand, makes
probabilistic assignments when the assignment probability of a category is at least
0.9989. We note that the number of DM’s assignments in Apggnrs 1S higher than that
of the algorithm with 7 values. Hence, the CPU time of Apggnrs Without T value is

higher than the cases where there are 7 values.
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4.4 Applications on randomly generated problems

We solve additional problems to make an extensive comparison on the assignment
performances of the non-probabilistic and probabilistic algorithms. We first explain
the random data generation method in Section 4.4.1. We then apply the algorithms for

piecewise linear and general monotone preference functions in the following sections.
4.4.1 Data generation

We generate random datasets where the scores are drawn from a Weibull distribution
which is commonly used to measure product reliability and model failure time. The
probability density function of the Weibull distribution is shown in (4.2) where « is
the scale parameter, S is the shape parameter and x represents the failure time. The
Weibull distribution can represent a variety of well-known distributions; it reduces to
exponential distribution when g =1 whereas it converges to a skewed normal

distribution when 8 = 2. The skewness disappears for higher values of .
We(x) = afxf-te~ex’ (4.2)

In this study, we intend to apply the non-probabilistic and probabilistic algorithms on
random data that has different distributions for each criterion. Thus, we use @ =1
while B values are generated from a uniform distribution with U[1,3]. We generate
independently distributed series for each criterion and then the scores are rescaled
between 0 and 1. (4.3) indicates the transformed formulae to generate random
number, y, that follows a Weibull distribution where x is uniformly distributed with
U[o,1].

|-

y=|=In(1 -] (4.3)

In the previous applications, we have considered problems where the alternatives are

assigned to three or four categories. In randomly generated problems, we study 100
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alternatives to be assigned to five categories. We generate 100 random datasets to be

applied in both piecewise linear and general monotone preference function cases.
4.4.2 Applications in randomly generated problems - piecewise linear case

As applications on randomly generated problems for piecewise linear preference
function case, we study three criteria and three to five subintervals to evaluate 100
alternatives. We designed different preference structures for each criterion to show
that our algorithms can handle various forms. We randomly define the number of
subintervals separately for each criterion in each sample. For example, the first
criterion may have four subintervals while the second criterion may have five

subintervals in a sample problem. We then randomly generate the w;, (the utility of

the subinterval p in criterion g;) and girji (the score of the breakpoint that define the
subinterval r;;) values for each criterion and subinterval. We calculate the aggregate
utility of the alternatives by linear interpolation. The utility thresholds for categories
are randomly defined for each problem set. In order to prevent extreme imbalance on
the number of alternatives to be assigned to each category, we adjust the category
thresholds in a way that the number of alternatives in a category is within the range of
[10, 30] for 5-category and 100-alternative problem. In constrained problems, the DM
initially assigns two alternatives to each category and hence 10 alternatives are

initially assigned by the DM.

4.4.2.1 Applications of the non-probabilistic algorithms in randomly generated

problems - piecewise linear case

We report the averages for 100 random problems in Tables 17 and 18 for non-
probabilistic case assuming a piecewise linear preference function. Table 17 shows
the average assignment performances of the algorithms when there is not any
constraint imposed to the problem. Table 18 indicates the average assignment
performances of the non-probabilistic algorithms for constrained problem assuming
piecewise linear preference function. As in the previous problems, Ayzp and Aganp
are the worst performing ones among the all algorithms. The rest four algorithms ask
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similar number of questions to the DM in both unconstrained and constrained
problems. Our algorithms Aggnram @nd Agenrs require the DM to assign alternatives
with narrower category ranges. This is more prominent in Agzgyrm In both
unconstrained and constrained problems. This can also be observed from the numbers
of PCDs. The CPU times are in parallel with the number of models solved for each
algorithm except Azgnrs. The reason for this is the rejection rates of random weight
generator in Aggyrs. The CPU time of Agzgnrs decreases when the problem turns to
constrained case. However, the decline is limited since the number of questions asked

the DM can raise up to 60 in some problems.

Table 17. Performances of the algorithms for unconstrained non-probabilistic case

in random data — piecewise linear case

Assign. DM’s assignments Number Number of CPU
Alg. bythe Among2 Among3 Among4 Among5 of models  time (in
models categories categories categories categories PCDs solved  seconds)
Apanp  35.8 39.5 12.4 5.6 6.7 107.9 13558 246
Apzp 25.6 23.8 12.0 10.5 28.1 191.7 21876 391
Agrge 49.3 29.2 8.1 4.1 9.3 94.9 12197 236
Agyi 49.2 22.7 11.0 6.3 10.8 106.8 19017 355
Apenry 480 36.8 9.1 2.4 3.7 77.0 14034 253
Apgnrs 486 32.7 6.4 6.7 5.6 88.0 2622 3052

Table 18. Performances of the algorithms for constrained non-probabilistic case in

random data — piecewise linear case

Assign. DM’s assignments Number Number of CPU
Alg. bythe Among2 Among3 Among4 Among5 of models  time (in
models categories categories categories categories PCDs  solved  seconds)
Apanp 474 19.9 13.4 73 12.0 116.6 4568 627
Apzp 52.1 11.5 8.3 7.6 20.5 132.9 3916 597
Apse 628 11.0 7.4 6.5 12.3 94.5 3562 556
Ayt 61.4 10.6 8.2 6.1 13.7 100.1 6254 762
Argnry 2.6 17.2 5.8 35 10.9 82.9 3778 569
Appnrs 635 13.7 6.1 4.9 11.8 87.8 1252 1806
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4.4.2.2 Applications of the probabilistic algorithms in randomly generated

problems - piecewise linear case

We apply the probabilistic algorithms in randomly generated problems assuming

piecewise linear preference function. Tables 19, 20 and 21 show the average

assignment performances of the probabilistic algorithms Apgye, Aprentm @nd

Aprents for different T values, respectively. In order to compare the probabilistic

assignments with non-probabilistic case, the assignment performance of the non-

probabilistic case is initially reported in each algorithm.

Table 19. Performance of A,z in random data — piecewise linear case

Assignments # of Dist. of errors #of % of #c?fl CPlé

correct correct models time (in

models prob. DM errors ¢, G G G Gy assign. assign. solved seconds)
N 492 . s08 - - - - - - . . 19017 355

prob.

005 268 267 465 18 00 00 05 04 09 249 93.3 17440 314
0.10 144 429 427 52 09 01 06 05 31 377 87.9 15220 280
015 7.8 554 368 90 24 09 10 1.0 38 464 83.8 12300 217
0.20 4.0 654 306 161 32 29 16 4.0 44 493 754 9374 135
0.25 1.9 737 244 251 48 65 4.7 57 34 486 65.9 6973 89
0.30 1.6 816 168 365 7.2 95 76 7.8 44 451 55.3 4618 56
035 05 89.5 100 489 106 128 101 11.1 43 40.6 454 2899 44
040 00 936 64 593 11.0 156 145 144 39 343 36.6 1833 26
045 0.0 9.6 34 69.2 111 17.0 192 176 43 274 28.4 1189 20
050 0.0 100 00 756 116 18.1 22.1 186 51 244 24.4 833 13

Table 20. Performance of Apggyam IN random data — piecewise linear case

Assighments # of Dist. of errors #of % of #(;)fI _CPlZl_

correct correct models time (in

models prob. DM errors (G, C3 4 G assign. assign. solved seconds)
NOm-" 480 - 520 - - - - - o . - 14034 253

prob.

005 204 391 405 27 01 12 03 10 01 364 93.1 12941 246
0.10 180 448 372 41 07 13 07 11 03 407 90.8 12530 240
015 170 478 352 55 09 16 10 16 04 423 88.5 12262 232
020 169 509 322 77 11 32 13 17 04 432 84.9 12049 225
025 170 518 312 95 13 29 14 32 0.7 423 817 11923 219
030 165 530 305 106 13 35 16 3.7 03 424 80.0 11796 214
035 154 570 276 125 16 44 13 50 0.2 445 78.1 11575 210
0.40 158 569 273 135 11 44 20 57 03 434 76.3 11520 201
045 153 595 252 148 13 50 21 52 12 447 75.1 11380 196
050 151 609 240 160 14 51 24 6.0 11 449 73.7 11306 186
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In general, our algorithms, Aprenry and Aprenrs Perform better than Apgy ¢ in terms
of the correct assignment of the alternatives. Our algorithms make higher number of
probabilistic assignments than A,z for low = values while the misclassification rates
are similar for the three algorithms. Apz, ¢ probabilistically assign all alternatives
when t increases to 0.5 without eliciting any assignment information from the DM as
in ETI problem. Hence, the number of misclassifications is high in Apg for high t
values. The classification errors mostly occurr in the second, third and fourth
categories in all algorithms. The CPU time to complete the task in Apggyrs IS Very
low when compared to the non-probabilistic case since the number of assignment

information obtained from the DM is low in probabilistic case.

Table 21. Performance of Aprgnrs in random data — piecewise linear case

Dist. of errors # of % of # of CPU
correct correct models time (in
assign. assign. solved seconds)

Assignments

# of
models prob. DM errors ¢; C, C; C, Cs

T

Nom- yge - BL4 - - - - - T . - 2622 3052
prob.

005 184 409 407 10 0.1 04 01 04 00 399 976 2175 213
0.0 178 451 371 20 03 07 02 08 00 431 956 2069 142
045 19 455 355 35 07 10 03 13 02 420 923 2023 161
020 167 491 342 45 06 10 0.7 20 02 446 908 1980 100
025 162 516 322 64 09 17 12 23 03 452 876 1920 73
030 156 545 2909 80 12 23 1.7 25 03 465 853 1845 63
035 145 570 285 100 13 2.6 26 31 04 470 825 1807 48
040 135 591 274 114 14 27 36 33 04 477 807 1773 42
045 14 605 255 131 18 2.8 45 36 04 474 783 1719 38
050 135 627 238 150 18 3.2 54 41 05 477 761 1671 _ 33

When the DM does not provide any t value to define the probabilistic assignments,
we probabilistically assign the alternative/s with the lowest relative entropy when the
ARE falls below 0.5. The reason for choosing the alternatives with lowest relative
entropy is that such alternatives are expected to be hypothetically assigned to one
category in most cases. Table 22 shows the assignment performances of our
algorithms, Aprenrm @nd Aprents When there is no t requirement for defining the
probabilistic assignments. Apgentm  Makes higher number of probabilistic

assignments than Apgenrs While Aprenrs require the DM to assign higher number of
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alternatives than Apgenra- The number of misclassifications in two algorithms are

less than the cases where T = 0.05.

Table 22. Performances of Apgenrym @Nd Aprents Without T value in random data

Dist. of errors # of % of # of CPU
c correct correct models time (in
5 assign. assign. solved seconds)

Assignments # of

models prob. DM errors C; C, C; C,

Alg.

Appeney 293 281 426 17 02 06 04 04 01 264 940 13366 214
Appenrs 281 250 469 04 00 03 00 01 00 246 984 2510 1193

4.4.3 Applications on randomly generated problems — general monotone case

We further apply the proposed and benchmark algorithms on randomly generated
problems assuming general monotone preference function. In general monotone
preference function case, we generate the same 100 random datasets as in the
piecewise linear case. Recall that x!, x%, ..., xrini are the ordered score values in
criterion g; in general monotone preference function case. Hence, we randomly
generate the marginal utility of m; criteria scores for each criterion g; to represent the
preference structure of the DM. By this way, we calculate the aggregate utilities of
the alternatives. The category thresholds are defined by the same way explained in
piecewise linear case. We apply the non-probabilistic and probabilistic algorithms in

randomly generated problems in Section 4.4.3.1 and 4.4.3.2, respectively.

4.4.3.1 Applications of the non-probabilistic algorithms in randomly generated

problems — general monotone case

Tables 23 and 24 show the average assignment performance of the proposed non-
probabilistic algorithm, Agzgnra, @nd the benchmark algorithms for unconstrained and
constrained problems. In general, the cognitive burden of the DM is higher in each
algorithm for general monotone case when compared to the piecewise linear case. In
line with the findings in the previous problems, Az yp and Ag,p are the worst

performing algorithms in randomly generated problems.
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As in the bus revision problem where the preferences of the DM is assumed to be
consistent with a general monotone function, Az, performs worse than Azg; and
Arentm 1N terms of the assignments by the models and the number of models solved.
Our algorithm, Azgnru, require the DM to assign alternatives with narrower category
ranges when compared to Az although the two algorithms ask the same number of

questions to the DM while solving similar number of models.

Table 23. Performances of the algorithms for unconstrained non-probabilistic case

in random data — general monotone case

Assign. DM’s assignments Number Number of CPU

Al bythe Among2 Among3 Among4 Among5  of models  time (in

9 models categories categories categories categories PCDs  solved  seconds)
Apanp  12.2 30.2 17.8 19.6 202 3054 27450 553
Aogp 177 15.3 16.8 18.2 320 3315 27250 520
Apse 291 20.8 19.9 15.3 149 2661 18741 401
Agpe 210 20.2 21.2 22.1 155 2909 34405 563
Apentm 29.3 23.1 20.8 17.6 9.2 252.3 19778 458

Table 24. Performances of the algorithms for constrained non-probabilistic case in

random data — general monotone case

Assign. DM’s assignments Number Number of CPU

Al bythe Among2 Among3 Among4 Among5  of models  time (in

9 models categories categories categories categories PCDs  solved  seconds)
Apanp  19.8 27.8 23.2 16.9 12.3 174.1 9248 956
Apzp 28.3 19.3 9.4 14.5 28.5 195.6 6723 689
Agge 43.1 23.7 18.2 7.9 7.1 112.2 5473 744
Ayt 35.9 25.7 20.6 9.9 7.9 128.2 9852 983
Argvry 445 26.8 15.3 8.7 4.7 1023 5324 762

4.4.3.2 Applications of the probabilistic algorithms in randomly generated

problems — general monotone case

We apply the probabilistic algorithms, Apg,¢ and Apreyram, IN randomly generated

problems and report the average values in Tables 25 and 26 for Apg ;¢ and Aprentu,
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respectively. In general, the misclassification rates are higher in general monotone

case when compared to the four-category ETI problem where the preferences of the

DM is assumed to be consistent with piecewise linear function. The numbers of

probabilistic assignments and misclassifications are lower in Ay, for low 7 values.

When t increases to 0.15, the two algorithms make similar number of

misclassifications while Apgrgnrar Makes higher number of probabilistic assignments.

The number of probabilistic assignments is higher in Apz ¢ for higher = values.

However, 70% of the probabilistic assignments are recorded as misclassifications.

Table 25. Performance of A,z in random data — general monotone case

Assignments # of Dist. of errors # of % of # of CPU

correct correct models time (in

models prob. DM errors ¢, G G Gy G assign. assign. solved seconds)
g'r‘;g 210 - 790 - - - - o o . , 34405 563
005 92 104 804 38 00 04 10 25 00 6.6 63.5 26035 454
010 7.9 215 706 105 01 11 31 6.2 00 110 51.2 20554 350
015 7.0 329 601 195 06 23 58 104 03 134 40.7 13996 252
0.20 58 446 496 293 18 48 94 127 06 153 34.3 10463 178
025 48 543 409 374 29 72 126 133 14 16.9 31.1 8063 129
030 35 640 325 451 45 10.2 149 135 2.0 189 29.5 4985 88
0.35 1.8 747 235 531 7.0 133 16.3 141 23 216 28.9 3975 53
040 05 834 16.1 593 9.3 163 16.3 145 29 24.1 28.9 1864 31
045 0.0 908 9.2 645 113 178 170 149 35 26.3 29.0 1240 18
050 0.0 1000 0.0 71.1 132 19.2 175 16.1 51 289 28.9 814 11

Table 26. Performance of Apggyrm IN random data — general monotone case

Assignments # of Dist. of errors # of % of # of CPU

correct correct models time (in

models prob. DM errors (G (3 Gy G assign. assign. solved seconds)
F':'r‘c’)rl‘) 293 - 707 - - - - - - - . 19788 458
005 165 146 689 73 20 15 13 09 16 73 50.0 21528 435
010 124 236 64 120 06 54 37 19 04 116 49.2 20884 423
0.15 116 309 575 179 11 6.7 59 30 12 13 42.1 19993 402
020 111 365 524 208 12 80 6.9 36 11 157 43.0 19192 376
025 109 395 496 241 26 81 7.2 55 06 154 39.0 18652 364
0.30 10 465 435 289 27 102 80 63 15 176 37.8 17742 355
035 99 505 396 312 28 107 89 6.0 27 193 38.2 17203 333
040 101 520 379 317 36 104 89 55 33 203 39.0 16991 329
045 99 528 373 322 36 107 88 56 35 206 39.0 16933 326
050 10 533 367 328 39 103 9.2 63 3.1 205 38.5 16793 325
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Our algorithm, Aprenram, Makes higher number of correct assignments for lower
values. When 7 > 0.35 in Apgenry, the number of misclassifications does not
increase at a significant rate as in A,z since the ARE rule prevents the probabilistic
assignments in case of insufficient number of assignments made by the DM. Although
the number of models decreases with an increasing t value, it remains at a certain
level due to the ARE rule in Apggnra- The assignment performance of no 7 case is
shown in Table 26. The number of misclassifications in Apggyray 1S l€SS than the
probabilistic cases while the number of information obtained from the DM is higher

in no T case.

4.5 Stopping condition in non-probabilistic case

The proposed probabilistic algorithms lead to decrease the assessment burden of the
DM especially for higher t values while the misclassifications are at acceptable level.
However, as mentioned before, the cognitive burden of the DM increases with the
increase in the number of categories, criteria or subintervals in non-probabilistic case.
For instance, in randomly generated problems with 5 categories, 3 criteria and 100
alternatives, almost 70 assignments are needed to be made by the DM so that the
model helps sorting approximately 30 alternatives. In this section we apply the
stopping condition such that the non-probabilistic algorithms will terminate once the
DM assigns a certain number of alternatives. As an application of non-probabilistic
algorithms, we study the unconstrained case of MBA problem where 81 alternatives
evaluated on three criteria and three subintervals are assigned to three categories. We
consider the DM’s assignments of 10, 20, and 30 alternatives and check the number

of assignments by the models.

Table 27 shows the assignment performances of the non-probabilistic algorithms
under this stopping condition. When the DM assigns 10 alternatives, the algorithms
assign fewer number of alternatives. Recall that the dominance relations help to
narrow down the category ranges in the first iterations. The best algorithm is
surprisingly random algorithm when the DM assigns 10 alternatives. In terms of the
number of PCDs, our algorithms perform better than the benchmark algorithms in all

85



10, 20 and 30-alternative cases. Our algorithms less frequently consult the DM in 20
and 30-alternative cases. When the DM assigns 30 alternatives, approximately 87%
of the alternatives are assigned to their true categories. Hence, the stopping condition

can be helpful in such an interactive sorting process.

Table 27. Performances of non-probabilistic algorithms — stopping condition case

NG e | medels | #orPeos FOUET oy
Apanp 10 5.7 16.2 2645 44
Apzp 10 0 20 3344 46
Agge 10 2.8 16.7 2685 41
Ayt 10 4 14 4951 64
ApenTM 10 3 13 2256 36
Agents 10 1 13 425 18
Apanp 20 9.7 28.6 4116 71
Apzp 20 0 40 5964 83
Apge 20 12.7 27.6 4097 64
Ague 20 12 26 7148 103
Apentm 20 16 23 3318 58
Argnts 20 22 23 774 39
Agpanp 30 15.4 395 5094 92
Apzp 30 0 60 7616 110
Agge 30 33.8 37.7 4719 73
Agye 30 34 36 7958 117
Apentm 30 41 33 3741 66
Arents 30 40 33 1062 128

4.6 Comparison of the performances of algorithms

In this section, we present the performance metrics of the proposed and benchmark
algoritms. We first give the comparisons of the non-probabilistic algorithms applied
on MBA and bus revision problem through radar charts in Section 4.6.1 and then
present the performances of the probabilistic algorithms applied on ET1 and randomly

generated problems in Section 4.6.2.
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4.6.1 Comparison of non-probabilistic algorithms — MBA and bus revision

problems

In our experiments on non-probabilistic algorithms, two different problems - MBA
problem and bus revision problem - with and without constraints are addressed. In the
first problem where there are three categories, three criteria, and 81 alternatives, the
preferences of the DM are assumed to be consistent with an underlying piecewise
linear utility function. On the other hand, in the second problem where there are four

categories, eight criteria and 76 alternatives, a general monotone preference function

is assumed to represent the preferences of the DM.
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Figure 16. Overall performances of the non-probabilistic algorithms on MBA and

bus revision problem

87



The overall performances of the proposed and benchmark non-probabilistic
algorithms are summarized in Figure 16 with respect to four performance metrics: (i)
the number of questions asked, (ii) the number of PCDs, (iii) the number of models
solved, and (iv) CPU time (in seconds). The performances of the non-probabilistic
algorithms are given for unconstrained and constrained cases of MBA and bus
revision problems separately. In each case, the performance metrics are scaled to one
in order to establish the charts. Our simulation-based algorithm, Azgnrs, performs
well in terms of the information obtained from the DM in MBA problem in both
unconstrained and constrained cases in comparison with the benchmark algorithms.
Moreover, Agents Solves the lowest number of models in each case. However, Aggnrs
has higher CPU time in unconstrained case due to excessive time for generating
10,000 sets of decision weights. In constrained case, Aggnrs has lower CPU time than
the benchmark algorithms thanks to the lower number of iterations and models solved.
Our model-based algorithm, Azgyrm, ON the other hand, requires less amount of
information from the DM in comparison with the benchmark algorithms in both MBA
problem and bus revision problem. Furthermore, it takes less amount of time to
complete the assignment process when compared to Agzgyrs in MBA problem and

benchmark algorithms in each case.

4.6.2 Comparison of probabilistic algorithms — ETI and randomly generated

problems

In order to measure the assignment performances of the probabilistic algorithms, we
apply the proposed and benchmark algorithms on ETI problem and several randomly
generated problems. In ETI problem where there are four categories, four criteria, and
128 alternatives, the preferences of the DM are assumed to be consistent with an
underlying piecewise linear utility function. In randomly generated problems, we
generate five-category, three-criteria and 100-alternative datasets based on Weibull
distribution. For comparison, we present general monotone preference function case
in randomly generated problems. We further give the performances of non-
probabilistic algorithms in each problem.
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The overall performances of the proposed and benchmark algorithms in 128-
alternative ETI problem are summarized in Table 28 with respect to four performance
metrics: (i) the number of probabilistic assignments, (ii) the number of DM’s
assignments, (iii) the number of errors, and (iv) CPU time (in seconds). The
performances of the probabilistic algorithms are summarized for different t values.
The results show that the algorithm of Bugdaci et al. (2013), Apgyc, assigns fewer
number of probabilistic assignments and hence asks the DM to assign higher number
of alternatives for lower 7 values. Moreover, Apg, i makes higher number of
misclassifications for higher t values. Our model-based algorithm, Apgenry Makes
higher number of probabilistic assignments than our simulation-based algorithm
Aprents While the two algorithms have similar number of misclassifications. In terms
of the CPU time, Aprgnrym has shorter CPU time for lower t values while Apgrenrm
takes less CPU time for higher t values due to the decline in the number of DM’s

assignments.

Table 28. Overall performances of the probabilistic algorithms in ETI problem

Assignments % of correct assign. | CPU time (in seconds)

T probabilistic DM
APBUG APRENTM APRENTS APBUG APRENTM APRENTS APBUG APRENTM APRENTS APBUC APRENTM APRENTS
Non- . - . 69 61 61 . - - 514 289 6520
prob.

0.05 36 64 49 63 43 39 100  96.9 95.9 465 285 406
0.2 71 76 65 49 40 33 958 947 89.2 339 252 122
0.35 105 104 70 23 18 28 867 913 87.1 135 185 67
0.5 128 108 77 0 15 21 461 907 84.4 15 165 42

Table 29 shows the assignment performances of the Apg ¢ and Apgrenry i general
monotone case of randomly generated problems where 100 alternatives are assigned
to five categories. The results are similar to the ETI problem in terms of the number
of probabilistic and DM’s assignments as well as the number of the number of
misclassifications. The number of DM’s assignments and the number of
misclassifications are higher when compared to the ETI problem although the number
of alternatives evaluated is higher in ETI problem. One possible reason for this can be

the characteristics of the piecewise linear and general monotone preference functions.
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Table 29. Overall performances of the probabilistic algorithms in randomly

generated problems — general monotone case

Assignments

% of correct assign.

CPU time (in seconds)

T probabilistic DM
APBUC APRENTM APBUG APRENTM APBUG APRENTM APBUC APRENTM
g‘rg’; i . 79 707 : : 563 458
0.05 10.4 23.6 80.4 64 63.5 49.2 454 435
0.2 44.6 39.5 49.6 49.6 34.3 39.0 178 376
0.35 74.7 52.0 235 37.9 28.9 39.0 53 333
0.5 100.0 53.7 0.0 36.4 28.9 38.4 11 325

90




CHAPTER 5

CONCLUSIONS

In this study, we develop interactive algorithms to assign alternatives into pre-defined
number of ordered categories. We assume that the preferences of DM are consistent
with an additive function in piecewise linear or general monotone form. We consider
the cases where the DM may or may not provide the size of the categories and initial
assignment information. We define the possible categories the alternatives can be
assigned throughout the LP or MIP models. We hypothetically assign the unlabeled
alternatives into categories based on a set of parameters compatible with the
preferences of the DM.

We suggest two approaches to utilize a set of compatible parameters that are used to
make hypothetical assignments. In model-based approach, we follow an ad hoc
procedure by taking the average of the minimum and maximum scores of category
thresholds as well as the utility scores of the unlabeled alternatives derived from
mathematical models to hypothetically assign the unlabeled alternatives. In
simulation-based approach, we generate 10,000 random sample sets with Monte Carlo
simulations assuming uniform distributions for parameters. We eliminate the sets of

parameters that are not compatible with the existing assignments of the DM.

Based on several hypothetical assignments, we estimate the probability of belonging
to a category for each alternative. Using the relative entropy measure, we find the
most ambiguous alternative to ask the DM for assignment. The relative entropy
method enables us to make comparison between alternatives with different category
ranges in terms of the uncertainty levels to belong to a category. We update the
probabilities iteratively utilizing the gathered information on the assignments of
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alternatives by the DM until all alternatives are assigned to the categories. Our non-
probabilistic algorithm guarantees assigning alternatives to their exact categories
assuming that the preferences of the DM are consistent with an additive preference
function. The proposed probabilistic algorithm on the other hand, allows the
alternatives to be assigned with respect to the assignments probabilities when

sufficient assignment information is obtained from the DM.

We demonstrate the performances of our probabilistic and non-probabilistic
algorithms against a state-of-the-art algorithm on three problems from the literature
and several randomly generated problems. We add three alternative selection
approaches from the literature that are employed within our algorithm in non-
probabilistic case in order to measure the performance of the alternative selection
approach based on the relative entropy. We consider the cases with/without category
size restrictions and initial assignments in non-probabilistic problem setting. We
assume either piecewise linear or general monotone preference function in three
problems from the literature and we consider the two functional forms in randomly

generated problems.

The results indicate that our algorithms tend to select among fewer categories when
asking the DM to make assignment in non-probabilistic case. Our algorithms perform
well in terms of the assignment information obtained from the DM and the number of
models solved. One may expect that the assignment of alternatives with wider
category ranges will bring more valuable information to the system. However, we
show that the category ranges do not represent the ambiguity of assignments and a

relative entropy-based method works well in identifying the ambiguity of alternatives.

We test the performances of our probabilistic algorithms against the benchmark
algorithm on an energy related problem and several randomly generated problems. In
general, it is seen that the rule of not assigning probabilistically without getting
enough information from the DM result in low number of misclassifications when
compared to the benchmark algorithm. We also consider to probabilistically assign

the alternative/s with lowest relative entropy. This approach vyields a similar
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assignment performance with the case of small 7 values where the number of
information obtained from the DM is high and the number of misclassifications is

low.

The algorithms with model-based and simulation-based hypothetical assignments
yield similar performances in terms of assignment information obtained from the DM
and the accuracy of the probabilistic assignments. Simulation-based technique takes
an extensive amount of time to generate 10,000 compatible set of parameters when
the DM assigns sufficient number of alternatives. We show that it is not possible to
conduct a simulation-based approach in an interactive setting where the preferences

of the DM is assumed to be consistent with a general monotone preference function.

The models used in this study always give a feasible solution when the DM’s
preferences are consistent with the assumed additive structure. However, it may be
possible for the DM’s assignments to be inconsistent with an additive preference
function. The models will detect such inconsistencies by resulting in infeasible
solutions. One way to handle the inconsistencies is to present the conflicting set of
assignments to the DM to make a revision about his/her preferences. In addition, our
approach enables the DM to go back to earlier stages of the process as in Ciomek et
al. (2017). Another way to handle the inconsistencies is to address the infeasibility of
the mathematical models. There are several ways to deal with such infeasibilities such
as minimizing the summation of classification errors, minimizing the maximum
classification error, and minimizing the number of misclassifications (see for example
Chinneck, 2008). A recent work of Kadzinski et al. (2020) considers the contingencies

in DM’s behavior to handle the inconsistencies in MCS problems.

Our algorithms are directly applicable to many problems such as patient or supplier
classification. Categorization of the patients as emergent and non-emergent takes an
important role in planning the allocation of nursing staff in accordance with the
nursing care needs. The probabilistic algorithm is appropriate for patient classification
since this kind of a problem can allow the misclassifications. On the other hand, there
are studies such as Manshadi et al. (2015) that apply UTADIS to supplier
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classification. Our non-probabilistic and probabilistic algorithms can be applied to

supplier classification assuming a piecewise-linear preference function.

As a future research direction, one can extend this work to develop an interactive
approach to MCS problems with non-monotonic criteria. Other further research areas
can be using a Bayesian approach for identifying the probabilities of assignments and
working with different utility function forms such as quasiconcave or L, norm
functions. The characteristics of different functional forms can be combined with the

relative entropy to help the DM in the assignment of alternatives to categories.

94



REFERENCES

Abbas, A. (2004). Entropy methods for adaptive utility elicitation. IEEE Transactions
on Systems Man and Cybernetics — Part A: Systems and Humans, 34(2), 169-
178.

Arrow, K. J., and Enthoven, A. C. (1961). Quasi-Concave Programming,
Econometrica, 29, 779-800.

Bana e Costa, C. A., De Corte, J. M., and Vansnick, J. C. (2005). On the Mathematical
Foundations of MACBETH, in Multiple Criteria Decision Analysis: State of
the Art Surveys, J. Figueira, S. Greco, M. Ehrgott (eds.), Springer, New
York, 409-442.

Belacel, N., and Boulassel, M. R. (2004). Multicriteria fuzzy classification procedure
PROCFTN: methodology and medical application. Fuzzy Sets and Systems,
141, 203-217.

Benabbou, N., Perny, P., and Viappiani, P. (2017). Incremental elicitation of Choquet
capacities for multicriteria choice, ranking and sorting problems. Artificial
Intelligence, 246, 152-180.

Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of
American Statistical Association, 39, 357-365.

Bliss, C. (1934). The methods of probits. Science, 79, 38-39.

Bouyssou, D., and Marchant, T. (2007a). An axiomatic approach to noncompensatory
sorting methods in MCDM, I: The case of two categories. European Journal
of Operational Research, 178(1), 217-245.

Bouyssou, D., and Marchant, T. (2007b). An axiomatic approach to noncompensatory
sorting methods in MCDM, II: More than two categories. European Journal
of Operational Research, 178(1), 246-276.

95



Branke, J., Corrente, S., Greco, S., and Gutjahr, W. (2017). Efficient pairwise
preference elicitation allowing for indifference. Computers & Operations
Research, 88, 175 — 186.

Brans, J. P., Vincke, P. H., and Mareschal, B. (1986). How to select and how to rank
projects: The PROMETHEE method. European Journal of Operational
Research, 24, 228-238.

Bugdaci, A. G., Kéksalan, M., Ozpeynirci, S., and Serin, Y. (2013). An Interactive
probabilistic approach to multi-criteria sorting. IIE Transactions, 45, 1048—
1058.

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring Efficiency of
Decision Making Units. European Journal of Operational Research, 2, 429-
444,

Chinneck, J. W. (2008). Feasibility and infeasibility in optimization: algorithms and
computational methods, Springer: New York, USA.

Choquet, G. (1955). Theory of capacities. Annales de L’ Institut Fourier, 5, 131-295.

Ciomek, K., Kadzinski, M., and Tervonen, T. (2017). Heuristics for prioritizing pair-
wise elicitation questions with additive multi-attribute value models. Omega,
71, 27-45.

Celik, B., Karasakal, E., and lyigiin, C. (2015). A probabilistic multiple criteria
sorting approach based on distance functions. Expert Systems with
Applications, 42(7), 3610-3618.

Denneberg, D. (1994). Non-additive measure and integral. Kluwer Academic
Publishers, Boston.

Devaud, J. M., Groussaud, G., and Jaquet-Lagreze, E. (1980). UTADIS: Une méthode
de construction de fonctions d’utilité additives rendant compte de jugements
globaux. in: Proceedings of the European working group on MCDA.
Bochum, Germany.

96



Devinney, T., Dowling, G. R., Perm-Ajchariyawong, N. (2008). The Financial Times
business school ranking: What quality is this signal of quality? European
Management Review, 5, 195-208.

Diakoulaki, D., Zopounidis, C., Mavrotas, G., and Doumpos, M. (1999). The use of a
preference disaggregation method in energy analysis and policy making.
Energy, 24(2), 157-166.

Dias, L. C., Mousseau, V., Figueira, J., and Climaco, J. (2002). An aggregation /
disaggregation approach to obtain robust conclusions with ELECTRE TRI.
European Journal of Operational Research, 138(2), 332—348.

Doumpos, M., and Zopounidis, C. (2002). Multicriteria Decision Aid Classification
Methods. AH Dordrecht, The Netherlands: Kluwer.

Doumpos, M., and Zopounidis, C. (2004). Developing sorting models using
preference disaggregation analysis: An experimental investigation.
European Journal of Operational Research, 154(3), 585-598.

Doumpos, M., and Zopounidis, C. (2011). Preference disaggregation and statistical
learning for multicriteria decision support: a review. European Journal of
Operational Research, 209(3), 203-214.

Doyle, J., and Green, R. (1994). Efficiency and Cross-Efficiency in DEA:
Derivations, Meanings and Uses. The Journal of the Operational Research
Society, 45(5), 567-578.

Driver, H. E., and Kroeber, A. L. (1932). Quantitative expression of cultural
relationships. University of California Publications in Archaeology and
Ethnology, 31, 211-216.

Edwards, W. (1971). Social utilities. Engineering Economist, Summer Symposium
Series, 6, 119-129.

Edwards, W., and Barron, F. H. (1994). SMARTS and SMARTER: Improved simple
methods for multiattribute utility measurement, Organizational Behavior
and Human Decision Processes 60, 306-325.

97



Figueira, J., Greco, S., and Slowinski, R. (2009). Building a set of additive value
functions representing a reference preorder and intensities of preference:
GRIP method. European Journal of Operations Research, 195(2), 460-486.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7, 179-188.

Ghaderi, M., Ruiz, F., and Agell, N. (2017). A ming approach for learning non-
monotonic additive value functions in multiple criteria decision aiding.
European Journal of Operational Research, 259(3), 1073-1084.

Gower, J. C. (1966). Some distance properties of latent root and vector methods used
in multivariate analysis. Biometrika, 53, 325-338.

Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst.
69(3), 279-298.

Greco, S., Matarazzo, B., and Slowinski, R. (2001). Rough sets theory for
multicriteria decision analysis. European Journal of Operational Research,
129(1), 1-47.

Greco, S., Matarazzo, B., and Slowinski, R. (2002). Rough sets methodology for
sorting problems in presence of multiple attributes and criteria. European
Journal of Operational Research, 138(2), 247-259.

Greco, S., Matarazzo, B., and Slowinski, R. (2004). Axiomatic characterization of a
general utility function and its particular cases in terms of conjoint
measurement and rough-set decision rules. European Journal of Operational
Research, 158(2), 271-292.

Greco, S., Mousseau, V., and Stowinski, R. (2008). Ordinal regression revisited:
Multiple criteria ranking with a set of additive value functions. European
Journal of Operational Research, 191, 415-435.

Greco, S., Mousseau, V., and Stowinski, R. (2010). Multiple criteria sorting with a set
of additive value functions. European Journal of Operational Research,
207(3), 1455-1470.

98



Hillier, F. S. (2001). Evaluation and decision models: a critical perspective. Kluwer,
Boston.

Holloway, H. A and White, C. C. (2003). Question selection for multi-attribute
decision-aiding. European Journal of Operational Research, 148, 525-33.

Hwang, C. L., and Yoon, K. P. (1981). Multiple Attribute Decision Making: Methods
and Applications; Springer: New York, USA.

Ishizaka, A., and Nemery, P. (2013). Multi-criteria decision analysis: methods and
software. John Wiley and Sons, Chichester, United Kingdom.

Jacquet-Lagreze, E. (1995). An application of the UTA discriminant model for the
evaluation of R&D projects, in: Pardalos PM; Siskos Y'; Zopounidis C (Eds.).
Advances in Multicriteria Analysis, Kluwer Academic Publishers,
Dordrecht, pp. 203-211.

Jacquet-Lagreze, E., and Siskos, Y. (1982). Assessing a set of additive utility
functions for multicriteria decision making: The UTA method. European
Journal of Operational Research, 10, 151-164.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review,
106, 620-630.

Kadzinski, M., Ghaderi, M., and Dabrowski, M. (2020). Contingent preference
disaggregation model for multiple criteria sorting problem, European
Journal of Operations Research, 281, 369-387.

Kadzinski, M., and Tervonen, T. (2013). Stochastic ordinal regression for multiple
criteria sorting problems. Decision Support Systems, 55, 55-66.

Kang, T. H. A, Frej, E. A., and De Almeida, A. T. (2020). Flexible and Interactive
Tradeoff Elicitation for Multicriteria Sorting Problems. Asia Pacific Journal
of Operations Research, 37(5), 1-22.

Karakaya, G., Galelli, S., Ahipasaoglu, S., and Taormina, R. (2016). Identifying
(quasi) equally informative subsets in feature selection problems for
classification:. a max-relevance min-redundancy approach. I|EEE
Transactions on Cybernetics, 46(6), 1424-1437.

99



Karsu, O. (2013). Using holistic multicriteria assessments: the convex cones
approach. In: Cochran J. (ed) Wiley encyclopedia of operations research and
management science. Wiley, New York, pp 1-14.

Karsu, O., Morton, A., and Argyris, N. (2018). Capturing preferences for inequality
aversion in decision support. European Journal of Operational Research,
264(3),686—706.

Kartal, H., Oztekin, A., Gunasekaran, A., and Cebi, F. (2016). An integrated decision
analytic framework of machine learning with multi-criteria decision making
for multi-attribute inventory classification. Computers & Industrial
Engineering, 101, 599-613.

Keeney, R. L., and Raiffa, H. (1976). Decisions with multiple objectives: Preferences
and value tradeoffs. New York: Wiley.

Kim, B., Gel, E. S., Fowler, J. W., Carlyle, W. M., and Wallenius, J. (2006).
Evaluation of nondominated solution sets for k-objective optimization
problems: an exact method and approximations. European Journal of
Operational Research, 173, 2, 565-582.

Korhonen, P., Moskowitz, H., and Wallenius, J. (1992). Multiple criteria decision
support - A review. European Journal of Operational Research, 63(3), 361
375.

Korhonen P., and Soismaa M. (1981). An interactive multiple criteria approach to
ranking alternatives. Journal of the Operational Research Society, 32, 577—
585.

Korhonen, P., Wallenius, J., and Zionts, S. (1984). Solving the discrete multiple
criteria problem using convex cones. Management Science, 30(11), 1336-
1345.

Koksalan, M., and Ozpeynirci, S. (2009). An interactive sorting method for additive
utility functions. Computers and Operations Research, 36(9), 2565-2572.

Koksalan, M., and Tuncer, C. (2009). A DEA-based approach to ranking multi-
criteria alternatives. International Journal of Information Technology &
Decision Making, 8(1), 29-54.

100



Koksalan, M., and Ulu, C. (2003). An interactive approach for placing alternatives in
preference classes. European Journal of Operational Research, 144(2), 429—
439.

Koksalan, M., and Sagala, P. N. (1995b). An approach to and computational results
on testing the form of a decision maker’s utility function. Journal of Multi-
Criteria Decision Analysis, 4 (3), 189-202.

Koksalan, M., and Sagala, P. N. (1995a). Interactive approaches for discrete
alternative multiple criteria decision making with monotone utility functions.
Management Science, 41 (7), 1158-1171.

Ké&ksalan, M., Biiyiikbasaran, T., Ozpeynirci, O., and Wallenius, J. (2010). A flexible
approach to ranking with an application to MBA Programs. European
Journal of Operational Research, 201, 470-476.

Koksalan, M., Karwan, M. H., and Zionts, S. (1984). An improved method for solving
multiple criteria problems involving discrete alternatives. IEEE Transactions
on Systems, Man, and Cybernetics, 14 (1), 24-34.

Lahdelma, R., Hokkanen, J., and Salminen, P. (1998). SMAA-—stochastic
multiobjective acceptability analysis. European Journal of Operational
Research, 106(1), 137-143.

Manshadi, E. D., Mehregan, M. R., Safari, H. (2015). Supplier Classification Using
UTADIS Method Based on Performance Criteria. International Journal of
Academic Research in Business and Social Sciences, 5(2), 31-45.

Mihelis, G., Grigoroudis, E., Siskos, Y., Politis, Y. and Malandrakis, Y. (2001).
Customer satisfaction measurement in the private bank sector. European
Journal of Operational Research, 130(2), 347-360.

Milton, J.S., and Arnold, J.C., (1995). Introduction to Probability and Statistics.
Probability and Statistics, 3rd ed. McGraw-Hill International editions.

Mousseau, V., and Slowinski, R. (1998). Inferring an ELECTRE TRI Model from
Assignment Examples, Journal of Global Optimization, 12(2), 157-174.

101



Mousseau, V., Dias, L. C., and Figueira, J. (2003). On the notion of category size in
multiple criteria sorting models. Cahier du LAMSADE 205, Universite Paris-
Dauphine, Paris.

Opricovic, S. (1998). Multi-criteria Optimization of Civil Engineering Systems,
Faculty of Civil Engineering, Belgrade.

Ostermark, R. (1999). A fuzzy neural network algorithm for multigroup classification.
Fuzzy Sets and Systems, 105, 113-122.

Ozpeynirci, O., Ozpeynirci, S., and Kaya, A. (2017). An interactive approach for
multiple criteria selection problem. Computers & Operations Research, 78,
154-162.

Ozpeynirci, S., Ozpeynirci, O., and Mousseau, V. (2018). An interactive algorithm
for multiple criteria constrained sorting problem. Annals of Operations
Research, 267(1), 447-466.

Pastijin, H., and Leysen, J. (1989). Constructing an Outranking Relation with
ORESTE. Mathematical and Computer Modeling, 12(10/11), 1255-1268.

Ramezanian, R. (2019). Estimation of the profiles in posteriori ELECTRE TRI: A
mathematical programming model. Computers & Industrial Engineering,
128, 47-59.

Roy, B. (1968). Classement et choix en presence de points de vue multiples (la
methode ELECTRE). RIRO, 8:57-75.

Roy, B. (1981). The optimisation problem formulation: criticism and overstepping.
Journal of the Operational Research Society, 32, 427-436.

Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods.
Theory and Decision, 31, 49-73.

Rubinstein, R. (1982). Generating random vectors uniformly distributed inside and on
the surface of different regions. European Journal of Operational Research,
10, 205-2009.

102



Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill, NY.

Savage, L. J. (1951). The theory of statistical decision. Journal of the American
Statistical Association, 46(253), 55-67.

Shannon, C. (1948). The mathematical theory of communication. Bell System
Technical Journal, 27(3), 379-423.

Silberberg, E., and Wing S. (2001). The Structure of Economics: A Mathematical
Analysis. McGraw-Hill, Trwin.

Sinuany-Stern, Z., Mehrez, A., and Barboy, A. (1994). Academic Departments
Efficiency via DEA. Computers and Operations Research, 21(5), 543-556.

Siskos, Y., and Spyridakos, A. (1999). Intelligent multicriteria decision support:
Overview and perspectives. European Journal of Operational Research,
113, 236-246.

Smith, C. (1947). Some examples of discrimination. Annals of Eugenics, 13, 272—
282.

Soylu, B. (2011). A multi-criteria sorting procedure with Tchebycheff utility function.
Computers and Operations Research, 38(8), 1091-1102.

Spyridakos, A., Siskos, Y., Yannacopoulos, D., and Skouris, A. (2001). Multicriteria
Job evaluation for large organizations. European Journal of Operational
Research, 130, 375-387.

Tervonen, T., and Lahdelma, R. (2007). Implementing stochastic multicriteria
acceptability analysis. European Journal of Operational Research, 178,
500-513.

Tervonen, T., Figueira, J. R., Lahdelma, R., Dias, J. A., and Salminen P. (2009). A
stochastic method for robustness analysis in sorting problems. European
Journal of Operational Research, 191(1), 236— 242.

103



Tervonen, T., van Valkenhoef, G., Bastiirk, N., and Postmus, D. (2013). Hit-and-run
enables efficient weight generation for simulation-based multiple criteria
decision analysis. European Journal of Operational Research, 224(3), 552—
559.

Tezcaner Oztirk, D., and Koksalan, M. (2019). An interactive algorithm for
multiobjective ranking for underlying linear and quasiconcave value
functions. Forthcoming, International Transactions in Operational
Research.

Torgerson, W. S. (1952). Multidimensional scaling: 1. Theory and method.
Psychometrika, 17, 401-419.

Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley.

Tryon, R. (1939). Cluster analysis. McGraw—Hill, New York.

Tzeng, G. H., and Huang, J. J. (2011). Multiple attribute decision making: Methods
and applications. Boca Raton, FL, Chapman and Hall/CRC Press, USA.

Ulu, C., and Koksalan, M. (2001). An interactive procedure for selecting acceptable
alternatives in the presence of multiple criteria. Naval Research Logistics,
48(7), 592-606.

Ulu, C., and Koksalan, M. (2014). An interactive approach to multicriteria sorting for
quasiconcave value functions. Naval Research Logistics, 61, 447-457.

Ulucan, A., and Atici, K. B. (2013). A Multiple Criteria Sorting Methodology with
Multiple Classification Criteria and An Application to Country Risk
Evaluation. Technological and Economic Development of Economy, 19(1),
93-124.

Valkenhoef, G., and Tervonen, T. (2016). Entropy-optimal Weight Constraint
Elicitation with Additive Multi-attribute Utility Models. Omega, 64(1), 1-
12.

Vetschera, R., Chen, Y., Hipel, K. W., and Kilgour, D. M. (2010). Robustness and
information levels in case-based multiple criteria sorting. European Journal
of Operational Research, 202(3), 841-852.
104



Wu, J., Sun, J., Liang, L., and Zha, Y. (2011). Determination of Weights for Ultimate
Cross Efficiency Using Shannon Entropy. Expert Systems with Applications,
38(5), 5162-5165.

Xiao, F. (2020). EFMCDM: Evidential Fuzzy Multicriteria Decision Making Based
on Belief Entropy. IEEE Transactions on Fuzzy Systems, 28(7), 1477-1491.

Yu, W. (1992). ELECTRE TRI: Aspects methodologiques et manuel d’utilisation.
document du LAMSADE, 74, Université de Paris-Dauphine, Paris.

Zangwill, 1. W. (1967) The piecewise concave function. Management Science, 13(11),
900-912.

Zhang, H., Gu, C. L., Gu, L. W., and Zhang, Y. (2011). The evaluation of tourism
destination competitiveness by TOPSIS & information entropy - A case in
the Yangtze River Delta of China, Tourism Management, 32, 443-451.

Zionts, S. (1981). A multiple criteria method for choosing among discrete alternatives.
European Journal of Operational Research, 7(2), 143-147.

Zopounidis, C., and Doumpos, M. (1999). Business Failure Prediction Using
UTADIS Multicriteria Analysis. Journal of the Operational Research
Society, 50(11), 1138-1148.

Zopounidis, C., and Doumpos, M. (2000). PREFDIS: A multicriteria decision support
system for sorting decision problems. Computers and Operations Research,
27(7-8), 779-797.

Zopounidis, C., and Doumpos, M. (2002). Multicriteria classification and sorting
methods: A literature review. European Journal of Operational Research,
138(2), 229-246.

Zubin, J. (1938). A technique for measuring likemindedness. Journal of Abnormal
Psychology, 33, 508-516.

105



APPENDICES

A. CURRICULUM VITAE

RESEARCH ASSISTANT ALI OZARSLAN
PhD Candidate, MBA

1 Office: 1-202, Department of Business Administration, Middle East
Technical University, Universiteler Mah., Dumlupinar Blv. No:1,
06800 Cankaya, Ankara, TURKEY

(1 Phones — Office: +90 (312) 2103033/8

[1 E-mails: oali@metu.edu.tr / aliozarslan86@gmail.com

PERSONAL INFORMATION
[] Birth Date & Place :29.04.1986 Iskenderun/Hatay / TURKEY
] Marital Status : Married, Two Children

EDUCATION

(12014 - Present Middle East Technical University, Ankara

Ph.D. in Department of Business Administration (Quantitative Decision Methods
Track)

[12011-2014 Middle East Technical University, Ankara
M.B.A. with thesis in Department of Business Administration

] 2004-2009 Bilkent University, Ankara

B.S. in Management in Faculty of Business Administration

[1 1997-2004 Istiklal Makzume Anatolian High School, Iskenderun/Hatay

106


mailto:oali@metu.edu.tr
mailto:aliozarslan86@gmail.com

PROFESSIONAL EXPERIENCE

[1 2012-Present  Research Assistant at Department of Business Administration,
METU

(1 2011-2012 Research Assistant at Department of Business Administration,
Quantitative Methods Track, Istanbul Medeniyet Universitesi (OYP-Teaching Staff
Training Program)

(1 2009-2011 Research Assistant at Faculty of Business Administration, Bilkent
University

AWARDS & ACHIEVEMENTS

[J Ranked 44" in the nationwide Academic Staff and Graduate Education Test (2012)
(1 Full scholarship awarded by Bilkent University for graduate study including tuition
waiver, accommodation and monthly stipend. (2009-2011)

1 Undergraduate Scholarship given by Bilkent University including tuition waiver,
accommodation and monthly stipend. (2004-2009)

[J Ranked 1503" (equal weight) in the nationwide University Entrance Examination
(OSS) out of more than 1,700,000 examinees. (2004)

PUBLICATIONS

Published
[J Ozarslan, A. and Karakaya, G. (2021). Cok Kriterli Siiflandirma Problemlerine
Yeni Bir Etkilesimli Yontem: Enerji Sektdriinde Bir Uygulama, Gazi Universitesi

Mihendislik Mimarlik Fakiiltesi Dergisi, 36:4, 2239-2254.

[J Ozarslan, A. and Goniil, M. S. (2016). Rassal Tavsiyeden Yararlanma ve Karar

Performansi, The Journal of International Management Research, 2(3), 213-224.

Under Review

[J Ozarslan, A. and Karakaya, G. (Revised version submitted). Interactive
Approaches to Multiple Criteria Sorting Problems: Entropy-Based Question Selection
Methods, International Journal of Information Technology & Decision Making.

107



CONFERENCE PRESENTATIONS AND PUBLICATIONS

[ Ozarslan, A. and Karakaya, G. (2019). An interactive sorting approach based on
information theoretic measure, 25th International Conference on MCDM, Istanbul,

Turkey.

[] Ozarslan, A. and Karakaya, G. (2019). Alternatiflerin siniflandirilmast igin yeni bir
etkilesimli yaklasim, 39th YAEM National Conference, Ankara, Turkey.

[J Esen, U. B. and Ozarslan, A. (2019). Tiirkiye’deki Yaratic1 Sehirlerin Belirlenmesi
ve Komsu Sehirler Arasindaki Etkilesiminin Mekansal Ekonometri Yontemi ile
Incelenmesi. III. Uluslararas1 Ekonomi, Finans ve Ekonometri Sempozyumu (ISEFE
2019), Hatay, Turkey.

[ Ozarslan D. and Ozarslan A. (2019). Ihracata Baslama ve Thracati Birakmanim
ARGE Faaliyetleri Uzerine Etkisi. III. Uluslararas1 Ekonomi, Finans ve Ekonometri

Sempozyumu (ISEFE 2019), Hatay, Turkey.

[] Ozarslan, A. and Ozarslan, D. (2018). BIST’te Islem Goren Sirketlerin Finansal
Basarisizliklarinin Tahmini, 38 Yoneylem Arastirmasi / Endiistri Miihendisligi
Ulusal Kongresi (YAEM), Anadolu Universitesi Endiistri Miihendisligi Boliimii,
Eskisehir, Turkiye.

[J Ozarslan, A. (2016). Determinants of Non-performing Loans in Central and Eastern
European Countries, 2" International Conference on Applied Economics and
Finance, Girne, North Cyprus, 5th-6th December, Conference Abstract proceedings
book, 94.

] Ozarslan, A. (2016). Exploratory Factor Analysis and Discriminant Analysis on
Cleveland Financial Stress Index (CFSI), 2" International Conference on Social
Sciences and Education Research, Istanbul, Turkey, 4""-6" November, The Book of
Abstracts, 153.

108



[ Ozarslan D. and Ozarslan A. (2016). Cok Kriterli Gruplandirma Yéntemleri ile
Tiirkiye’de iflas Eden Firmalarm Incelenmesi. International Turgut Ozal on Business,

Economics and Political Science, Ankara, Turkey.

(] Ozarslan A. and Ozarslan D. (2016). Petrol Fiyatlartyla BIST Endekslerinin
Etkilesimi Uzerine Ampirik bir Calisma. 1. Lisansiistii Isletme Ogrencileri

Sempozyumu, Gaziantep, Turkey.

[ Ozarslan, A., Goniil M. S. and Nabavi. H. (2015). Cok Amagl Karar Verme
Yontemiyle Asfalt Geri Doniisiim Ornegi, YAEM 2015 —35. Yoneylem Arastirmast
ve Endiistri Miihendisligi Ulusal Kongresi, Ankara, Turkey, 9th-11th September,
Ozetler: p146.

[ Ozarslan, A., Nabavi, H. and Gonil, M. S. (2015). Multi-Objective Decision
Making in Asphalt Recycling: A Municipality Case, 23™ International Conference on
Multiple Criteria Decision Making, Hamburg, Germany, 2nd-7th August, Book of
Abstracts: p13.

[ Ozarslan, A., and Goéniil, M. S. (2013). “An empirical study on advice taking:
Comparison of techniques on measurement of advice utilization”, 9" International

Student Conference, Izmir University of Economics, Izmir, Turkey, April 14-15.

PROJECTS AND INTERNSHIPS
(1 internship at CMB (Capital Market Board) (February 2009)
1 EU Project Management Training Program (November 2007)

COMPUTER SKILLS

[1 Programming Languages: JAVA, R, E-VIEWS, STATA, SPSS, MINITAB,
GPower, SuperDecisions, GLP, MOLP, LINDO, QM for Windows, GAMS, CPLEX,
PYTHON, C, C++.

109



B. TURKISH SUMMARY / TURKCE OZET

1. Giris

Profesyonel veya giinlik yasamda alinan kararlar genellikle birden cok alternatif
icermektedir. Bu tdr problemler, alternatifler birden fazla kritere gore
degerlendirildiginden c¢ok kriterli karar verme (CKKYV) problemleri olarak
adlandirtlir.  Alternatifleri degerlendirmek i¢in kullanilan kriterler genellikle
birbiriyle ¢elismektedir. Ornegin, bir tedarik¢i segim probleminde tedarikgileri
degerlendirmek i¢in genelde kalite ve fiyat kriterleri gbz Oniinde bulundurulur.
Kaliteli bir tirliniin fiyatinin genellikle yiiksek, kalitesiz bir liriiniin fiyatinin ise diisiik
olmasi beklendiginden bu iki kriter birbiriyle c¢elisen kriterler olarak
degerlendirilmektedir. Diger bir 6rnek ise yatirimcilarin yatirim yapacaklari finansal

araglara karar verirken getiri ve risk kriterlerini kullanmasidir.

Birbiriyle celisen kriterler ile degerlendirilen alternatiflerin oldugu problemlerde
karar vericinin (KV’nin) bu kriterler arasinda ddiinlesim yapmasi gerekmektedir. Bu
tiir yargisal kararlar KV’ nin tercih yapisi hakkinda bilgi saglamaktadir. Cok kriterli
karar yardim1 (CKKY) yontemleri karar verme siirecine yardimci olmak i¢in KV’ nin
tercih bilgilerini kullanir. Bu yontemlerdeki amac, ornek kararlar yoluyla KV’nin
tercih yapisini ortaya ¢ikararak ¢éziime ulasmaktir. Roy (1981), CKKYV problemlerini
tanimlama, se¢im, siralama ve siniflandirma problemleri olarak dorde ayirmistir.
Tanimlama problemleri, problemin &zelliklerini tanimlamak i¢in alternatiflerin ve
benzersiz 6zelliklerinin aciga ¢ikarildigi problemlerdir. Secim problemlerinde amac,
en c¢ok tercih edilen alternatifi veya alternatifler kiimesini segmektir. Segim
problemlerine tipik bir 6rnek, bir sirketteki bir pozisyon i¢in en uygun aday(lar)
belirlemektir. Diger bir 6rnek ise en uygun tedarik¢i veya tedarikgileri segmektir.

Siralama problemlerinde ise alternatifler en ¢ok tercih edilenden en az tercih edilene
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dogru siralanmaktadir. Enerji siirdiiriilebilirligine dayali iilke siralamalar1 ve

iiniversite siralamalar1 bu problemlerin tipik 6rnekleridir.

Siniflandirma problemlerinde ise KV nin alternatifleri iki veya daha fazla kategoriye
ayirmasi gerekmektedir. Burada amag, daha iyi kategorideki bir alternatif, daha koti
kategorilerdeki tiim alternatiflere tercih edilecek sekilde alternatifleri kategorilere
atamaktir. Kategoriler, esik degerler ad1 verilen sinirlarla birbirinden ayrilmaktadir.
Smiflandirma problemlerine Ornek olarak kredi basvurularinin kabul edilmis,
beklemede ve reddedilmis olarak iic kategoriye ayrilmasi verilebilir. Kredi
derecelendirme kuruluslan tarafindan firmalarin risk tutumlarina gore kategorilere

ayrilmasi bir bagka ornektir.

Cok kriterli smiflandirma (CKS) problemlerini ¢ozmek icin gelistirilen farkli
yaklagimlar ve yontemler bulunmaktadir. Bu yaklasimlardan biri olan tercih
ayristirma analizi KV’nin tercihleriyle tutarli bir tercih modeli olusturmaktadir
(Jacquet-Lagreze ve Siskos, 2001). Olusturulacak tercih modelinin parametrelerini
bulmak i¢in KV’den alinan karar ornekleri kullanilmaktadir. KV nin tercihlerini
kullanmanin bir yolu, alternatifleri atamak ic¢in gerekli model parametrelerinin
degerlerinin KV tarafindan belirlemesidir. Buna dogrudan ortaya c¢ikarma teknigi
denmektedir ve genellikle bu durumda KV’nin biligsel yiikii olduk¢a fazladir.
ELECTRE-TRI yontemi CKS problemleri i¢in yaygin olarak kullanilan bir dogrudan
ortaya ¢ikarma teknigidir (Yu, 1992). Yontem, KV nin karar agirliklarinin, kategori
esiklerinin ve temsili kategori profillerinin belirlenmesini gerektirmektedir. Boylece

alternatifler arasinda ikili karsilagtirmalar yapilarak siniflandirma yapilmaktadir.

Dogrudan ortaya ¢ikarma tekniklerine bir alternatif olarak KV’nin tercih yapisinin
tercih fonksiyonu olarak adlandirilan bir yapiya sahip oldugu varsayilmaktadir. Bu tiir
yaklagimlara fonksiyon tabanli yaklasimlar denmektedir. Fonksiyon tabanh
yaklagimlar, KV’den elde edilen karar Orneklerine dayali olarak model
parametrelerini bulmaya g¢aligmaktadir. Bunun bir yolu KV’nin baslangi¢ta atama
orneklerini saglamasi (6rn., 3. alternatif birinci kategoriye atansin, 5. alternatif ikinci

kategoriye atansin gibi) ve bu 6rnek atamalar1 kullanarak olusturulan karar modeli
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tarafindan geri kalan alternatiflerin atanmasidir. Atama 6rnekleri elde etmenin baska
bir yolu is KV ile interaktif bir sekilde tercih yapisinin asamali olarak ortaya
c¢ikarilmasidir. Interaktif yaklasimlarda KV nin karar siirecine dahil olmasi, model
parametrelerinin KV tarafindan asamali olarak 06grenilmesini saglamaktadir.
Literatiirde, KV’nin tercihlerinin farkli toplamsal tercih fonksiyonlar1 ile tutarh
oldugu varsayilarak c¢esitli smiflandirma yaklasimlar1 gelistirilmistir. Toplamsal
tercih fonksiyonlarinda her bir kriterdeki fayda degerlerinin toplanmasi ile
alternatiflerin nihai fayda degerleri belirlenmektedir. Genel monoton (Greco vd.,
2011), parcali dogrusal (Koksalan ve Ozpeynirci, 2009) ve yari-icblikey (Ulu ve
Koksalan, 2001; 2014) tercih fonksiyonlart KV’nin tercihlerini temsil etmek igin

yaygin olarak kullanilan toplamsal fonksiyon bigimleridir.

Bu tezde, KV’nin tercihlerinin pargali dogrusal ve genel monoton toplamsal tercih
fonksiyonlar1 ile tutarli oldugunu varsayilarak KV ile interaktif siniflandirma
yaklagimlart gelistirilmektedir. Alternatiflerin atanabilecekleri kategorileri belirlemek
icin matematiksel modeller ¢oziilmektedir. Her iterasyonda KV’den bir alternatifin
kategori bilgisi alinmaktadir. KV’den alinan atama bilgisi matematiksel modellere
dahil edilerek diger alternatiflerin kategori araligim1 daraltmada kullanilmaktadir.
Matematiksel modellerden ve Monte Carlo simiilasyonlarindan elde edilen ve KV nin
tercihleriyle uyumlu olan parametreleri kullanarak alternatifler kategorilere farazi
olarak atanmaktadir. Burada amac alternatiflerin kategorilere atanma sikliklari
hakkinda bilgi toplamaktir. Kategorilere atanma sikliklari alternatiflerin bir
kategoriye ait olma olasiligina doniistiirilmektedir. KV’ye sorulacak alternatifi
secmek ve sistemin belirsizligini belirlemek i¢in bir bilgi teorik Sl¢iisii olan goreceli
entropi  kullanilmaktadir. Onerilen olasiliksiz ve olasiliksal —algoritmalarin
performansin1 6lgmek icin literatiirden {ic Ornek problem ve rassal veri ile

olusturulmus problemler tizerinde farkli yontemlerle kiyaslama yapilmaktadir.

Tezin geri kalan1 su sekilde organize edilmistir: Bolim 2’de, CKKY yaklasimlarina
iligkin literatiir taramas1 verilmektedir. Boliim 3’te ilk olarak, gelistirilen etkilesimli
yaklagimlar sunulmaktadir. Daha sonra kiyaslama amaciyla kullanilan yaklagimlar

aciklanmaktadir. Boliim 4’te ise gelistirilen ve kiyaslama amaciyla kullanilan
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yaklagimlarin performanslarini 6lgmek i¢in yapilan uygulamalarin sonuglar ile

kisitlamalar ve gelecekteki ¢alisma alanlar1 anlatilmaktadir.

2. Literatiir Taramasi

Smiflandirma problemleri, se¢im ve siralama problemlerinden farkli 6zelliklere
sahiptir (Vetschera vd., 2010). Secim ve siralama problemlerinde yeni alternatiflerin
eklenmesi, mevcut alternatiflerin mevcut konumunu degistirebilir. Siniflandirma
problemlerinde ise yeni alternatiflerin eklenmesi, 6nceden atanan alternatiflerin
kategorisini degistirmez (Zopounidis ve Doumpos, 2002). Bu nedenle siniflandirma
problemleri genellikle KV’nin mutlak kararlar vermesini gerektirirken, kararlar segim
ve siralama problemlerinde gorecelidir. Ayrica, siniflandirma problemlerinde se¢im
ve siralama problemlerinde kullanilan alternatifler arasinda ikili karsilagtirmalar

yerine genellikle atama 6rnekleri kullanilir.

Doumpos ve Zopounidis (2011) yaygin olarak kullanilan CKKY yaklagimlarini
istatistiksel Ogrenme ve tercih ayristirma analizi olarak iki kisma ayirmaktadir.
Istatistiksel 6grenme tekniklerin kural tabanli modeller siralama problemleri igin
siklikla kullanilmaktadir (Greco vd., 2001; 2002). Tercih ayristirma analizi ise
KV’nin tercihlerine dayal1 olarak kriter degerlerinin birlestirilmesi iizerine tercih
modelinin olusturulmasini igermektedir (Jacquet-Lagreze ve Siskos, 2001). Finansal
yOnetim (Zopounidis vd., 2000), pazarlama (Mihelis vd., 2001) ve is degerlendirmesi
(Spyridakos vd., 2001) gibi alanlarda tercih ayristirma analizi ile ilgili uygulamalar
yapilmaktadir.

CKKYV problemlerine fonksiyon tabanli yaklagimlarda KV nin tercihlerinin bir tercih
fonksiyonu ile tutarli oldugu varsayilmaktadir. Toplamsal tercih fonksiyonu tercih
modellemesi i¢in yaygin olarak kullanilmaktadir (Keeney ve Raiffa, 1976). Koksalan
ve Sagala (1995b), KV nin tercihleriyle tutarli olan tercih fonksiyonunun formunu
test etmek icin interaktif bir yaklasim gelistirmistir. Dogrusal, yari-igbiikey, yari-
digbiikey veya genel monoton toplamsal tercih fonksiyonu ile ilgili olarak KV’ nin

tercihlerinin tutarliligit asamali olarak aranmaktadir. Her iterasyonda KV’den
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alternatifler arasinda ikili karsilastirmalar yapmasi istenmektedir ve bu bilgi

fonksiyonlarin tutarliligini kontrol etmek i¢in kullanilmaktadir.

Dogrusal tercih fonksiyonu, KV ’nin tercihlerini temsil etmek i¢in pratik ve kullanigh
bir fonksiyondur. Kriterlerin agirliklar1 karsilik gelen kriter puanlar ile ¢arpilip
toplanarak alternatiflerin toplam faydast bulunmaktadir. Dogrusal tercih
fonksiyonuna iliskin en yaygin ve temel yaklagimlardan biri her bir kriterde sabit
agirliklarin kullanilmasidir. Agirliklar genellikle yetkililer veya uzmanlar tarafindan
belirlenir. Ornegin, global MBA programi siralamalar1 Financial Times (FT)
tarafindan yillik olarak yayinlanmaktadir ve mezun maasi, kadin 6gretim iiyelerinin
orani gibi 20 kriter bulunmaktadir. Kdksalan vd. (2010) sabit agirliklar yerine agirlik
araliklarmin kullanilmasin1 6nermektedir. Sabit agirliklardaki kiiciik degisikliklerin

kararlarda dramatik degisikliklere neden oldugu sonucuna ulasilmistir.

Yari-igbiikey tercih fonksiyonlari ise ¢ogu gercek diinya durumunda insan
davranislarini iyi temsil etmektedir (Arrow ve Enthoven, 1961). Yatirimlarda riskten
kaginma ve tiiketimde azalan marjinal ikame orani gibi prensipler, yari-ichlkeylik
varsayimiyla agiklanmaktadir (Silberberg ve Suen, 2001, s. 260-261). Yari-ighikey
fonksiyonlar, parcali bir bigimde dogrusal bir fonksiyonla yaklasik olarak tahmin
edilebilir (Zangwill, 1967). Iyi bilinen bir siiflandirma yontemi olan UTADIS,
Devaud vd. (1980) ve Jacquet-Lagreze (1995) tarafindan gelistirilmistir. UTADIS te
alternatifler parcali dogrusal tercih fonksiyonu tahmin edilerek Kkategorilere
atanmaktadir. Alternatiflerin yanlis siniflandirilmasindan kaynaklanan siniflandirma
hatalarini en aza indirmek i¢in bir dogrusal programlama (DP) modeli ¢oziilmektedir.
UTADIS kategorilerin esik degerleriyle ayrildigi esik tabanli bir smiflandirma
yontemidir. KV’den alinan referans alternatiflerin atama bilgileri DP modeline
eklenerek kriter agirliklar1 ve kategori esik degerleri bulunmaktadir. Bu degerler
kullanilarak alternatifler kategorilere atanmaktadir. UTADIS, KV’den elde edilen
tercih bilgilerine iyi uymasi amaclanan tek bir parametre kiimesini tahmin etmektedir.
Ancak, alternatiflerin farkli smiflandirilmasina neden olan KV’nin tercihleriyle
uyumlu birden ¢ok parametre seti olabilir (Koksalan ve Ozpeynirci, 2009). Tek bir

tercih fonksiyonundan tiiretilen karar parametrelerinin saglamligi, sirali regresyon
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cercevesinde dikkate alinmistir (Figueira vd., 2009; Greco vd., 2008; 2010).
Fonksiyon tabanli yaklagimlarda sirali regresyonun rolii, KV nin tercihlerine dayali
olarak saglam sonuglar formiile etmektir. Sirali regresyon teknigi, UTA ve UTADIS
yontemlerinde oldugu gibi KV’nin karar oOrnekleriyle uyumlu tek bir tercih

fonksiyonu yerine uyumlu tercih fonksiyonlariin biitliniinii dikkate almaktadir.

Interaktif yaklasimlar genellikle KV’nin tercih fonksiyonunun o&rtiikk bicimde
oldugunu varsaymaktadir (Korhonen vd., 1992). Dolayisiyla bu yaklagimlar, uyumlu
tercih fonksiyonlarinin tamamimi dikkate almaktadir (Greco vd., 2010). KV ile
etkilesimli olarak tercih bilgilerinin agsamali bir sekilde ortaya cikarilmasi kisinin
tercih yapist hakkinda Ogrenmeyi gelistirmeye yardimci olmaktadir. Ozellikle
atamalarda tutarsizliklar olmast durumunda kararlarin yeniden gbézden gegirilmesi
icin KV’nin 6nceki adimlara donmesi saglanmaktadir. CKS problemlerine uyumlu
tercih fonksiyonlarimin tamamini dikkate alan oncii yaklagimlardan biri Ulu ve
Koksalan’in (2001) calismasidir. Calisma, KV’nin tercihlerinin dogrusal, yari-
icbiikey veya genel monoton tercih fonksiyonu ile tutarli oldugunu varsayarak
alternatifleri iki kategoriye atayan etkilesimli yaklasimlar gelistirmektedir. Calisma,
¢oziilen DP modellerinin sayisin1 azaltmak i¢in alternatiflerin kategorileri araliklarini

tanimlarken baskinlik iliskilerinden yararlanmaktadir.

Koksalan ve Ulu (2003), Ulu ve Koksalan’in (2001) yaklasimini dogrusal tercih
fonksiyonu varsayimiyla ikiden fazla kategori i¢in genellestirmektedir. Alternatiflerin
olas1 kategorileri atanabilecekleri en 1yt ve en kotii kategorileri agisindan
tanimlanmaktadir. Alternatiflerin ait oldugu gercek kategorileri bulmak i¢in DP
modelleri ile alternatiflerin kategori aralig1 daraltilirken her iterasyonda KV’den bir
alternatifin atama bilgisi istenmektedir. Koksalan ve Ozpeynirci (2009) ise KV nin
parcali dogrusal bir fayda fonksiyonuna sahip oldugunu varsayarak karma tamsayili
programlama (KTP) modellerini kullanarak esik tabanli etkilesimli bir siralama
yaklagimi gelistirmistir. Alternatiflerin olasi atamalarini belirlemek i¢in matematiksel
programlama modellerinin kullanimi saglam sirali regresyon (SSR) ilkesinde
genellestirilmistir (Greco vd., 2008). SSR ilkesi, KV nin tercihleriyle uyumlu tiim

olas1 parametre kiimelerini dikkate almaktadir.
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Benabbou vd. (2017), esik tabanli siniflandirma problemleri i¢in Choquet integraline
dayali KV ile interaktif olarak pismanlik tabanli bir yaklasim gelistirmistir. Choquet
integralleri, etkilesimli kriterlere ve toplamsal olmayan tercihlere izin vermektedir
(Choquet, 1955; Denneberg, 1994). Calisma kategorileri ayiran esiklerin karar
stirecinin basinda KV tarafindan tanimlandigini varsaymaktadir. Pismanlik yaklagimi,
esikler ve Choquet degerleri arasindaki farka dayali olarak alternatiflerin yanlis
atanmasini dikkate almaktadir. Yanlis siniflandirmadan kaynaklanan pismanligi en
aza indiren atamayi bulmak icin DP modelleri ¢6ziilmektedir. Minimaks pigmanlik

stratejisinin KV’den bilgi toplama siirecinde kullanilmasi 6nerilmektedir.

Bazi simiflandirma problemlerinde KV’ nin belirgin tercihleri veya problemin dogasi
geregi bazi smirlamalar hakkinda karar siirecinin  basinda bilgi sahibi
olunabilmektedir. Ornegin, insan kaynaklar1 yoneticisi ise basvuranlari ise alinan ve
alinmayan olarak smiflandirirken deneyime dayali kriterlerin egitime dayali
kriterlerden daha Onemli oldugunu belirtebilir. Ayrica problemin dogasi geregi
kategori Dbiyiikliigli kisitlamalar1 olarak bir kategoriye/kategorilere atanacak
alternatiflerin saysi {izerinde belirli sinirlar veya kesin degerler getirebilir. Ornegin,
bir kredi yoneticisi, kabul edilecek kredi bagvurularinin sayisina kisitlama getirebilir.
Bu tiir problemler, Mousseau vd. (2013) tarafindan kisitli siralama problemleri (KSP)
olarak tanimlanmaktadir. Kriterlerin 6nemi tizerindeki kisitlamalar, fonksiyon tabanli
yaklagimlarda matematiksel modellere dogrusal kisitlamalar eklenerek ele alinabilir.
Fakat kategori biiyiikliigii kisitlamalar1 bir kategoriye atanacak alternatif sayisim

sinirlamak i¢in ikili degiskenlerin tanimlanmasina ihtiyag¢ duyar.

Siniflandirma problemleri {izerine yapilan gilincel c¢alismalarda alternatiflerin
kategorilere atanma olasilig1 iizerine yogunlasilmaktadir. Kadzinski ve Tervonen
(2013), Greco vd. (2008; 2010) ¢alismalarindaki SSR yaklagimi ile stokastik ¢ok
kriterli kabul edilebilirlik analizini (SCKKA) birlestirmislerdir. Lahdelma vd. (1998)
tarafindan gelistirilen SCKKA, KV’nin tercihlerini temsil eden karar agirlik uzayi
hakkinda bilgi saglayan bir simiilasyon teknigidir. KV nin tercihleri ile uyumlu tercih
fonksiyonlariin 6rneklemesi Monte Carlo simiilasyonlar1 ile elde edilmektedir.

Calismada kategoriye ait olma olasiligini ifade eden kategori kabul edilebilirlik
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indeksi (KKI) gelistirilmistir. Atama 6rneklerinin sayis1 arttikga drnekleme icin
olusturulan  tercih  fonksiyonlarimin  uyumsuzluk sebebi ile ¢ogunlukla

kullanilamadigi/reddedildigi sonucuna ulasilmaktadir.

Bugdaci vd. (2013) KV’nin tercihlerinin parcali dogrusal toplamsal fonksiyonla
tutarli oldugunu varsayarak alternatifleri siralamak i¢in etkilesimli bir olasiliksal
yaklasim Onermektedir. Alternatiflerin kategori araliklarini daraltmak i¢in DP
modelleri ¢oziilmektedir. Kriter agirliklari ve kategori esikleri bilinmeyen
parametreler olarak kabul edilerek bunlarin minimum ve maksimum degerleri ek
DP’ler araciligiyla tahmin edilmektedir. Minimum ve maksimum degerler arasinda
tekdiize dagilim oldugu varsayimiyla alternatiflerin fayda degerinin kategori
esiginden daha biiyiik olma olasiligi hesaplanmaktadir. Olasilik degeri KV tarafindan
belirlenen bir esik deger olan 1-t degerini asiyorsa algoritma alternatifi ilgili
kategoriye olasiliksal olarak atamaktadir. Her iterasyonun sonunda KV tarafindan
atanmak tizere bir alternatif secilmektedir. Olasiliksal siniflandirmaya ek olarak
kategorilere alternatifleri dogru bir sekilde yerlestiren olasiliksiz durumu da dikkate
almaktadir. KV’ye sorulacak alternatifin se¢imi de olasiliklara dayanmaktadir.
Olasilig1 0,5’e en yakin olan alternatif, KV’ye sorulacak en belirsiz alternatif olarak

kabul edilmektedir.

3. Siiflandirma Problemlerine Interaktif Yaklasimlar

Bu tezde ¢oklu kriterlere gore degerlendirilen alternatifleri siniflandirmak i¢in KV ile
etkilesimli yaklagimlar gelistirilmektedir. KV nin tercihlerinin (i) pargali dogrusal ve
(i1) genel monoton toplamsal tercih fonksiyonlar: ile temsil edildigini varsayarak
matematiksel modeller ¢oziilmektedir. Kategori biiyiikliigii kisitlamalarinin oldugu
durumda ise DP modelleri, KTP modellerine doniismektedir. Olasiliksiz ve olasiliksal
durumlar icin farkli algoritmalar olusturulmaktadir. Ayrica algoritmalarin
siniflandirma performansini 6lgmek icin kullanilan kiyaslama algoritmalar1 da

aciklanmaktadir.
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3.1 Parcal Dogrusal Tercih Fonksiyonlar

Bu boliimde KV’nin tercihlerinin parcali dogrusal bir fayda fonksiyonu ile tutarl
oldugu varsayilmaktadir. DP1,, ; ve DP2,, , kategori araliklarini belirlemek igin
kullanilan enkii¢iikleme ve enbiiyiikleme modelleridir. A kiimesinin n Kritere gore
degerlendirilen m alternatifi a4, a,, ..., a,, seklinde gosterilmektedir. KV’nin
alternatifleri C;, C, ..., C; diye gosterilen q adet kategoriye atamasi gerekmektedir.
Burada C; ve C,, en ¢ok ve en az tercih edilen kategorilerdir. Cy, k kategorisine ait

alternatifler kimesini temsil ederken C, kategorileri bilinmeyen alternatifler

kimesidir.
(DP14,)
Min U(a;) — uy (3.1)
Kisitlar:
n (Tji~1 i
g(a) — g,J
U(aj) = Z Z Wip + ﬁwirﬁ ,Vaj EA (32)
i=1 \ p=1 9 ~4
U(g) =uy, Ya, €C,, k=1,..,q—1 (3.3)
U(g) <up-,—6, Vg€ C, k=2...q (3.4)
U1 —u =26, k=2,..,q-1 (3.5)
Ug1 =6 (3.6)
n bi—-1
> D wp=1 (3.8)
i=1 p=1
Wi, = 0, i=1,..,n p=1,..,b; (3.9

Burada 6, 0,001 olarak ayarlanmis kiiclik bir pozitif sabittir. Modelin amag
fonksiyonu, alternatif a, ’nin faydasi ile k kategorisinin esik degeri arasindaki farki en
aza indirmektir. Kisit (3.2), parcali bir dogrusal toplamsal fonksiyona dayali olarak
her bir alternatifin faydasii belirlemektedir. (3.3) ve (3.4), KV tarafindan atanan

alternatiflerin kategori sinirlari icinde olmasini saglamaktadir. Kisit (3.5), daha iy1 bir
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kategorinin fayda esiginin daha kotii bir kategoriden daha yiiksek oldugunu garanti
etmektedir. (3.6) ve (3.7) kisitlarinda kategori esiklerinin alt ve iist limitleri, en ¢ok
ve en az tercih edilen kategorilerin fayda araliklarina sahip olacak sekilde belirlenir.
Kisit (3.8), wyy, degerlerinin toplaminin bire esit olmasini saglamaktadir ve kisit (3.9)
negatif olmama kisitidir. Ikinci modelde, (3.2)’den (3.9)’a kadar olan tiim kisitlar ayn1

kalarak amag fonksiyonunu enbiiyiikleme seklinde degistirilmektedir.

(DP24,x)
Maks U(a;) — uy (3.10)
s.t. (3.2)—(3.9)

Kategori biyiikliigi kisitlamalarini modellere yansitmak icin kategorilerdeki
alternatif sayilart matematiksel modellere yansitilmistir. Bu tiir kisitlamalar1 dahil
edebilmek igin kullanilan yj; ikili degiskeni, alternatif a; k kategorisine atanmigsa bir
degerini, aksi takdirde sifir degerini alacak sekilde tanimlanmistir. Olugturulan KTP

modelleri asagida verilmektedir.

(KTP1,,;)
Min U(a;) — uy
s.t.  (3.2) = (3.9),

U(a) 2ue =M —yjp), Va; €Cp, k=1,..,q—1 (3.11)
U(a) S +MA—yp) —& Vg € C, k=2..q (3.12)
q
Zyjk =1 vg €A (3.13)
k=1
m
Zij =s, VC €C’ (3.14)
j=1
vik €{0,1},  Vjk (3.15)

Burada M bly(k bir pozitif sabittir. s, ise k kategorisinde bulunan alternatif sayisidir
ve C5 kesin kategori bilyiikliigii bilinen kategoriler kiimesidir. (3.11) ve (3.12)

kisitlar1 ikili degiskenler araciligiyla kategorisi heniiz bilinmeyen alternatiflerin
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atandiklar1 kategori sinirlar icinde fayda degeri almalarini saglamaktadir. Kisit (3.13)
her alternatifin tek bir kategoriye atanabilecegini belirtmektedir. Kategori bliytikligl
kisitlamalari, kisit (3.14) icinde ele alinmaktadir. Tkinci modelde, (3.2)’den (3.9)’a ve
(3.11)’den (3.15)’¢ kadar tim kisitlamalar korunarak enbiiyiikleme modeli

¢cozllmektedir.

(KTP24,1)
Maks U(a;) — uy
s.t. (3.2) — (3.9),(3.11) — (3.15)

3.2 Genel Monoton Tercih Fonksiyonlar:

KV’nin tercihlerinin monoton azalmayan bi¢imde toplamsal fayda fonksiyonu ile
tutarli oldugu varsayildiginda kriter skorlar1 en az tercih edilenden en ¢ok tercih
edilene dogru siralanmaktadir. xt, x5, ..., x,inl. kriter g;’deki skorlarin siralanmis halini

ifade etmektedir (x} < x\,,, h=1,..,m; — 1, m; < m). g; Kriterindeki alternatif

a;’

;’nin marjinal faydasi u; ( gi (aj)) olarak tamimlansin. Burada alternatif a; nin nihai

faydasi, U (aj), her bir kriterdeki marjinal faydalarin toplamidir.

(DP3,,1)

Min U(a;) — uy

s.t. (3.3) = (3.7),

ul(x,ll) < ui(xﬁ+1),h =1,...m-1, i=1,..,n (3.16)
ul-(xi') =0,i=1,..,n (3.17)

z u;(xhy,) =1 (3.18)
U(aj) = Z?:l Uu; (gl(aj)) , Va] eEA (319)

Kisit (3.16) daha kiiciik kriter skorlarinin her bir kriterde daha diisiik marjinal
faydalara sahip olmasini garanti etmektedir. Kisitlar (3.17) ve (3.18) marjinal fayda

degerlerinin [0,1] araliginda olmasin1 saglamaktadir. Kisit (3.19)’da alternatiflerin
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nihai fayda degerleri hesaplanmaktadir. Asagida enbiiyiikleme amac¢ fonksiyonuna

sahip DP modeli ve KTP modelleri yer almaktadir.

(DP4,, 1)
Maks U(a;) — uy
s.t. (3.3) = (3.7), (3.16) to (3.19)

(KTP34,1)
Min U(a;) — uy
s.t.  (3.3)—(3.7), (3.11) — (3.19)

(KTP4g, 1)
Maks U(a;) — uy
s.t.  (3.3)=(3.7), (3.11) — (3.19)

3.3 Olasiliksiz Durum icin Algoritma

a, alternatifinin en kétii ve en iyi kategorileri CEX ve CE' ile gésterilmektedir. DP1,,
ve DP2,, , modellerinin optimal hedef fonksiyonu degerleri ise hfi"(a; k) ve
hf5 (a;, k) ile temsil edilmektedir. Baglangigta KV’den atama bilgisi alinmadigi igin
Co=Ave C, =0, k=1,..,q olarak algoritma baslamaktadir. Her a; € C, igin

baslangicta CEX =¢q ve CE' =1 olarak tanimlanmaktadir. Asagida olasiliksal
atamalara izin verilmeyen durum i¢in algoritmanin (Azgy7) asamalart verilmektedir.
Birinci asamada her alternatif i¢cin matematiksel modeller ¢oziilerek kategori araliklar
belirlenmektedir. Burada siireci kisaltmak adina en koti kategoriyi tespit ederken
alternatiflerin en iyi kategorisinden bagslanmaktadir. Bir alternatifin kategorisi
daraltildig1 zaman baskinlik iliskileri kullanilarak diger alternatifler i¢in de kategori
daraltma islemi yapilmaktadir. Ikinci asamada ise KV’ye kategorisi sorulacak bir
alternatif secilmektedir. KV’ye sorulmak iizere secilen alternatifin kategorisini
belirledikten sonra baskinlik iliskilerini kullanarak diger alternatiflerin kategori

araliklar1 daraltilmaktadir. KV’den alinan bilgi DP modellerine eklenerek yeniden
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birinci agamaya geg¢ilmektedir. Tlim alternatifler kategorilere yerlestirilene kadar ayni
asamalar uygulanmaktadir. Son agsamada tiim atama bilgileri KV’ye sunularak

algoritma sonlanmaktadir.

Algoritma Aggnr

Asama 1 (kategori daraltma): Her a; € C, icin k = Cfi olsun.
1.1. DP1,, ; modelini ¢oz.
« Eger hf; (a;, k) = 0 ise CEX = k olarak giincelle. a,’ye baskin olan her a,’ € C,
icin CEX = k olarak giincelle. C5X = CE' = k ise C; « C; U {a,/} ve Cy < Co —
{a,} olarak giincelle. CEX = CF! = k ise €}, « Cy U {a,} ve C, « C, — {a,} olarak
glincelle ve asama 1.3’e git. Aksi halde k = k — 1 olsun ve asama 1.2’ye git.
« Eger hfi(an, k) <0vek < CEX —1ise k =k + 1 olsun ve asama 1.1’i tekrar et.
« Eger hf*(an, k) < 0ve k = CEX — 1 ise asama 1.2’ye git.
1.2. DP2,, , modelini ¢oz.
. Eger hfy (a,, k) < 0 ise CE! = k + 1 olarak giincelle. a;’nin baskin oldugu her
ay € Co icin CE' = k + 1 olarak giincelle. C5X = &' = k + 1ise ¢, « €, U {ay)
ve C, « Co — {a,} olarak giincelle. CEX = CE' = k 4 1 ise Cypq < Cisq U {a,} ve
Co < Cy — {a;} olarak giincelle. Asama 1.3’¢ git.
. Eger hf;(a, k) = 0ve k > CElise k =k— 1 olarak giincele ve asama 1.2°yi tekrar
et.
« Eger hfy (a,, k) = 0 ve k = CFl ise asama 1.3’¢ git.
1.3. Eger Cy’daki tiim alternatifler i¢in kategori daraltma asamasi uygulandiysa,
asama 2’ye git. Aksi halde siradaki a; € C, ile asama 1.1e git.
Asama 2 (KV've sorulacak alternatifi belirleme): KV’ye sormak icin ai € C,
alternatifini se¢. a; nin KV tarafindan atandig1 kategori C,+ olsun. C,» < C;r U {af}
ve C, « Co — {ag} olarak giincelle. a$’ye baskin olan her ay € C, igin C/* =k’
olarak; a;’nin baskin oldugu her a € C igin Cf,i = k' olarak giincelle. Eger C;, = @
ise asama 3’e git. Aksi halde asama 1’e git.

Asama 3 (bitis): Tiim alternatiflerin atama bilgilerini KV ye bildir ve dur.
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Bu calismada alternatiflerin kategorilere atanma egilimini belirlemek i¢in model
tabanli ve simiilasyon tabanli olmak tizere iki farkli yaklasim gelistirilmektedir.
Model tabanli yaklasimda modellerin parametre degerleri kullanilmaktadir.
Kategorisi kesin olarak bilinmeyen m tane alternatifin g tane kategoriye atanmasi
probleminde alternatiflerin kategorilere atanma durumunu belirlemek i¢in DP1,, , ve
DP2,,, modelleri ¢Ozulmektedir. Bu da toplamda 2*m*(g-1) DP modeli
¢oziildiigiinii gostermektedir. Bir alternatif icin DP1,, , modeli ¢oziildiigiinde u;, sinir
degerinin en biiylik degeri elde edilitken DP2, ;, modeli ¢ozildiigtinde en kiigiik
degeri elde edilmektedir. KV’den bilgi alindik¢a en biiyiik ve en kiiglik degerler
arasindaki farkin azalmasi ve sinir degerlerin gergek degerlerine yakinsamalari
beklenmektedir. Kategorilerin sinir degerlerinin en biiyiikk ve en kiiglik degerleri
arasinda tekdiize dagilim gosterdigi varsayilarak bu iki degerin ortalamasi
alinmaktadir. Kategorisi bilinmeyen alternatifler igin her modelde farkli w;,, ve U (aj)
degerleri bulunmaktadir. DP1,,, ve DP2, ;, modelleri ¢ozildiginde smir
degerlerinin ortalamasi alinirken alternatiflerin de toplam fayda degerlerinin
ortalamas1 alinmaktadir. ki model ¢oziildiigiinde ortalama siir degerlerine ve
alternatiflerin ortalama toplam fayda degerlerine gore farazi siniflandirma yapilarak
bilgi toplanmaktadir. Kategorisi bilinmeyen her alternatif i¢in toplamda m*(q-1)
farazi atama gergeklestirilmektedir. y;, a; alternatifinin k kategorisine farazi atanma
sayist olsun. a,’nin k kategorisine atanma olasiligi Es. 3.25’te oldugu gibi k
kategorisine atanma sikliginin toplam atanma sikligina béliinmesiyle bulunmaktadir.
Burada x., a; alternatifinin k kategorisine atanip atanmadigi bilgisini temsil

etmektedir.

X
PO =1) = o —— (3.25)

r=1 xtr

Model tabanli atama yaklagimina ek olarak, alternatiflerin atama sikligini bulmak icin
simiilasyon tabanli bir atama yaklagimi da gelistirilmektedir. Simiilasyon tabanli
yaklagimi uygulamak i¢in KV nin tercihlerinin parcali dogrusal bir fonksiyonla tutarli
oldugu varsayilmaktadir. Parametreler icin tekdiize dagilim varsayarak Monte Carlo

simiilasyonlar1 ile 10.000 rastgele ornek seti olusturulmaktadir. 10.000 uyumlu
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parametre seti olusturmak i¢in verimli bir yaklasim gelistirilmektedir. KV tarafindan

yeni atamalarin  eklenmesiyle =~ w;, degerlerinin  araliklarimin  daralmasi
beklenmektedir. KV kisith siniflandirma problemlerinde oldugu gibi bu degerler igin
araliklar saglayabilir. Eger boyle bir bilgi mevcut degilse o zaman w;, degerlerinin
araligin1 bulmak i¢in DP modelleri ¢oziilmektedir. Bu araliklar i¢inde tekdiize bir
sekilde dagildig1 varsayilarak wy, degerler iiretilerek toplamlari bir olacak sekilde

olceklendirilmektedir.

Kategori daraltma siirecleri KV ye sorulan alternatifin atanma bilgisi 1s1¢inda devam
ettigi icin KV’ye hangi alternatifin sorulacagi biiylik 6neme sahiptir. Burada amag
¢cOziim uzayini en fazla daraltacak alternatifin secilerek KV’den en az bilgi alinarak
karar siirecinin tamamlanmasidir. KV’ye sorulacak alternatifin se¢ciminde literatiirde
farkli yontemler kullanilmaktadir. Ulu ve Kdksalan (2001) KV nin tercihlerini temsil
edebilecek parametreleri bulmak igcin DP modelleri ¢dzmektedir. Bu modeller
sonucunda ortaya c¢ikan parametrelere gore hesaplanan fayda degerlerinden
kategorilerin sinirlarina en yakin alternatif KV’ye sorulmaktadir. Bugdaci vd. (2013)
kategori sinirlarindan biiyiik veya kiigiik olma olasiligi birbirine en yakin olan

alternatifi KV’ye sormaktadir.

Yukarida bahsedilen iki ¢alisma da alternatiflerin atanma belirsizliklerini tahmin
ederek en belirsiz olanin1t KV’ye sormaktadir. Bu tezde KV’ye sorulacak alternatifi
belirlemek i¢in goreceli entropi Slgiitii kullanilmaktadir. Shannon (1948) bilgi kurami
baglaminda olasiliksal degiskenlerin tasidigi belirsizligi 6lgmek i¢in entropiyi
onermektedir. Es. 2.26’da entropinin formiilii bulunmaktadir. Entropi olasilik
degerleri ile bu degerlerin logaritmasinin ¢arpimlar1 toplanarak hesaplamaktadir.
Burada logaritma fonksiyonunun diisiik olasiliklar i¢in daha yiliksek deger vermesi
diistik olasilikli degerlerin daha cok bilgi tasimasiyla dogru orantilidir. Ayni sekilde
olasilig1 yiiksek bir olayin gerceklesmesi durumunda daha az bilgi alinmaktadir. Bu
sekilde rastgele degiskenlerin tagidig1 belirsizlik 6l¢tilmektedir. Maksimum entropi

ise tiim degerlerin ayni olasiliga sahip oldugu durumda gergeklesmektedir.

HX) = =X} _ p(x)logs p(xi) (2.26)
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CKS problemleri i¢in entropi yontemi siklikla kullanilmaktadir. Abbas (2004)
alternatiflerin von Neumann ve Morgenstern fayda degerlerini tahmin ederek
maksimum entropi prensibini kullanarak KV’ye soru sormaktadir. Valkenhoef ve
Tervonen (2016) ise Abbas’in (2004) calismasini KV’nin dogrusal bir fayda
fonksiyonuna sahip oldugunu varsayarak alternatifleri  siralamak igin
genisletmektedir. Ciomek vd. (2017) siralama problemleri icin alternatiflerin
alabilecekleri siralart Monte Carlo simiilasyonlar: ile tahmin etmektedir. Sistemin
toplam entropisini en ¢ok diisiirecek olan ikiliyi KV’ye kiyaslamasi igin sorarak
etkilesimli bir yontem oOnermektedir. Wu vd. (2011) ise veri zarflama analizi

yontemiyle siralama yapmak i¢in entropiyi kullanmaktadir.

Olas1 deger sayist farkli olan degiskenlerin belirsizlikleri entropi ile dogru
olgiilmeyebilir. Ornegin, doért kategorili bir problemde alternatif 1 ve 2’nin
atanabilecekleri olas1 kategoriler sirasiyla {C;,C,} ve {C;,C,, Cs,C4} olsun.
Kategorilere atanma olasiliklari ise sirasiyla {0,50, 0,50} ve {0,05, 0,10, 0,15, 0,70}
olsun. Alternatif 1 ve 2’nin entropileri sirastyla 1 ve 1,32 olarak hesaplanmaktadir.
Alternatif 1’in daha yiiksek belirsizlige sahip olmasi1 beklenmesine ragmen, alternatif
2’nin olast kategorileri daha fazla oldugu i¢in daha yiiksek bir entropiye sahiptir.
Shannon (1948) farkli sayida degerlere sahip degiskenler igin goreceli entropiyi
onermistir. Es. 2.29°da goriildiigii tizere bir alternatifin entropi degeri ayni sayida olast
kategoriye sahip maksimum entropi degerine bolliinerek goreceli entropi
hesaplanmaktadir. Verilen 6rnekte alternatiflerin goreceli entropisi sirastyla 1 ve 0,66

olarak hesaplanmaktadir.

- Zzzl p(xi)log, p(xx)
log, q

Hp(X) = (2.29)

3.4 Olasihiksal Durum igin Algoritma

DP1,,x ve DP2,, ; modelleri kategori araliklarini daraltarak birgok alternatifin
KV’ye sorulmadan dogru kategorisine atanmasini saglamaktadir. Literatiirde tiim

alternatifleri dogru kategorisine atayan etkilesimli ¢aligmalara bakildiginda
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alternatiflerin yartya yakini KV tarafindan atanmaktadir (6rn., Koksalan ve Ulu, 2003;
Ulu ve Koksalan, 2014). Bu da KV’nin muhakeme yiikiiniin fazla olmasina sebep
olmaktadir. Ote yandan UTADIS gibi etkilesimli olmayan yontemlerde KV’den toplu
olarak bircok referans alternatifin kategori bilgisi alinmaktadir ve DP modeli
coziilerek tek bir parametre seti olusturulup alternatifler bu parametrelere gore
smiflandirilmaktadir. Bu da KV’nin muhakeme yiikiinii artirirken birgok alternatifin
hatal1 siniflandirilmasina sebep olmaktadir. Bu sebeplerle bu makalede etkilesimli ve
olasiliksal bir yontem gelistirerek KV’den alinacak en az bilgi ve en az siniflandirma

hatasi ile karar siirecinin tamamlanmasi1 hedeflenmektedir.

Bir alternatif icin bir kategoriye ait atanma olasilig1 diger kategorilere gore ¢ok daha
yiiksekse (diisiikse) bu alternatifin bu kategoriye ait olma ihtimalinin daha yiiksek
(diistik) oldugu diisiiniilebilir. Bu tiir alternatiflerin KV’ye sorulmadan atanmasina
olasiliksal siniflandirma denmektedir. Bu ¢calismada DP modelleri ¢oziildiikten sonra
olasiliklar hesaplanarak olasiliksal siniflandirma da yapilmaktadir. KV tarafindan
belirlenmis bir kritik deger, T, olasiliksal atamalarda hata payini ifade etmek igin
tanimlanmaktadir. a; alternatifi i¢in eger p(xy = 1) = 1 —t ise bu alternatif k
kategorisine olasiliksal olarak atanmaktadir. KV’den atama bilgisi almadan olasiliksal
atama yapmak, yanlis smiflandirma oranlarini artiracaktir. Bu sebeple Es. 2.29°da
ifade edildigi tizere alternatiflerin atanma belirsizliklerini ifade eden goreceli entropi
degerlerinin kategorisi bilinmeyen alternatifler i¢in ortalamasi alinarak sistemin
belirsizligi tahmin edilmektedir. KV’den atama bilgisi alindik¢a goreceli entropi
degerlerinin azalma egiliminde olmasi beklenmektedir. Ortalama goreceli entropi
(OGE) degeri 0,5’in altina diistiigiinde olasiliksal atamalara izin verilmektedir.
Asagida olasiliksal algoritma verilmektedir. Cy, kategorisi bilinmeyen alternatiflerin

kimesini ifade etmektedir.

Algoritma Aprent

Asama 1 (kategori daraltma): Her a, € C, icin k = CE! olsun.

1.1. DP1,,  modelini ¢oz.
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« Eger hf;*(a, k) = 0 ise CEX = k olarak giincelle. a;’ye baskin olan her a, € C,
icin C5X = k olarak giincelle. CZX = CE' = k ise C; « C, U {ay} Ve Co « Co—
{a,} olarak giincelle. CEX = CE! = k ise C, « C, U {a,} ve C, < C, — {a,} olarak
giincelle ve agama 1.3°¢ git. Aksi halde k = k— 1 olsun ve asama 1.2’ye git.
« Eger hf(a, k) <0vek < CEX — 1ise k =k + 1 olsun ve asama 1.1’i tekrar et.
« Eger hf;'(a, k) < 0vek = CFX — 1 ise asama 1.2’ye git.
1.2. DP2,, , modelini ¢oz.
. Eger hf; (a, k) < 0 ise CF' = k + 1 olarak giincelle. a,’nin baskin oldugu her
ay € Co igin CE' = k + 1 olarak giincelle. CZX = &' = k + 1ise ¢, « C, U {a,)
ve Cy « Co — {a,} olarak giincelle. CEX = CE' = k + 1 ise Cyyq < Crpq U {a,} ve
Co < Co — {a;} olarak giincelle. Asama 1.3’¢ git.
« Eger hfy (a, k) = 0vek > CElise k = k—1 olarak giincele ve asama 1.2’yi tekrar
et.
« Eger hf; (ap, k) = 0 ve k = CE ise asama 1.3’¢ git.
1.3. Eger Cy’daki tiim alternatifler i¢in kategori daraltma asamasi uygulandiysa,
asama 2’ye git. Aksi halde siradaki a; € C; ile asama 1.1°e git.
Asama 2 (olasiliksal atama): Eger OGE < 0,51isehera; € Cyicinp(xy, =1) = 1 —
T oldugunda C, « C, U {a;} ve C, <« C, — {a;} olarak glincelle. C, = @ ise asama
4’e git. Aksi halde agama 3’e git.
Asama 3 (KV'ye sorulacak alternatifi belirleme): KV’ye sormak i¢in ai € C,
alternatifini se¢. a; nin KV tarafindan atandig1 kategori C,+ olsun. Cy» « C;r U {af}
ve Co < Co — {af} olarak giincelle. ai’ye baskin olan her ay € C, igin CF* =k’
olarak; a;’nin baskin oldugu her a,s € C igin Cfi = k' olarak giincelle. Eger C;, = @
ise agsama 4’e git. Aksi halde asama 1’e git.

Asama 4 (bitis): Tim alternatiflerin atama bilgilerini KV ye bildir ve dur.
3.5 Kiyaslama Yapilacak Yaklasimlar

Bu calismada gelistirilen olasiliksiz ve olasiliksal algoritmalarin siniflandirma

performanslarin1 6lgmek i¢in literatiirden algoritmalar ve KV’ye sorulacak alternatifi
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se¢im yontemleri kullanilmaktadir. Algoritmalar1t KV’nin muhakeme yiikii a¢isindan
kiyaslamak igin, ikili kategori kararlar1 (IKK) dl¢iitii sunulmaktadir. KV tarafindan
her kategori aralig1 daraltmasi bir IKK olarak kabul edilmektedir. AS) k olas1 kategori
arasinda KV’nin atama sayis1 olsun. Bir g-kategori problemindeki toplam IKK sayisi
Es. 4.1°deki gibi tanimlanmaktadir. Ornegin, iki ve {i¢ kategori arasindaki KV
atamalarinin sayisi sirasiyla o ve B ise, KV’den gereken ikili kategori bilgisi sayisi

o+2p olarak hesaplanmaktadir.

q
IKK =) (k—1)%AS (4.1)

3.5.1 Olasiliksiz Durum i¢in Kiyaslama Algoritmalar:

[k kiyaslama algoritmas1 Bugdaci vd. (2013) calismasinin olasiliksiz algoritmasidir.
Yazarlar bir alternatifin faydasinin bir kategorinin fayda esiginden daha biiyiik olma
olasiligin1 hesaplamak i¢in DP modelleri kullanmaktadir. Olasilig1 0,5’e en yakin olan
alternatif, KV’ye sorulacak en belirsiz alternatif olarak kabul edilmektedir. Burada
mantik olarak olasilik degeri 0,5°¢e esitse, secilen alternatifin bir kategorinin esiginden
daha biliylik veya daha kiigiik bir faydasina sahip olma olasiligi esit olarak

algilanmaktadir.

Olasiliksiz durumda kiyaslama yapilacak yontemler arasinda Bugdaci vd. (2013)
caligmasina ek olarak ii¢ alternatif se¢im yontemi kullanilmaktadir. Bu ii¢c yontem
olasiliksiz algoritmaya dahil edilerek KV’ye sorulacak alternatifte farklilik
gostermektedir. Ilki KV tarafindan atanacak alternatiflerin rastgele secildigi rassal
algoritmadir. Alternatif secim siirecinde rassallik oldugu i¢in her bir problemde
rastgele 100 &rnek olusturularak ortalamalar raporlanmaktadir. Ikinci olarak
Ozpeynirci vd. (2018) calismasindaki alternatif secim ydntemi kullanilmaktadir. En
genis kategori araligina sahip alternatifler arasindan en yiiksek baskinlik iligkilerine
sahip olan alternatif KV’ye sorulmak iizere se¢ilmektedir. Ugiincii se¢im ydntemi,

Benabbou vd. (2017) ¢aligmasinin maksimum minimaks pismanlik yaklagimidir.
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3.5.2 Olasiliksal Durum icin Kiyaslama Algoritmasi

Bu ¢aligmada gelistirilen olasiliksal algoritmanin performansini 6lgmek i¢cin Bugdaci
vd. (2013) calismasmin algoritmast (BA) kullamlmaktadir. BA, u, ve wy,
degerlerinin u¢ degerlerini bulmak i¢in DP modelleri ¢6zmektedir. Bu degerlerin
tekdiize dagilim gosterdigi varsayilarak alternatiflerin degerleri ile kategori sinirlari
arasindaki fark tahmin edilmektedir. Bu farkin normal dagildigi varsayilarak
alternatiflerin degerlerinin kategorilerin sinirlarindan  biiyiik olma olasilig
hesaplanmaktadir. t kritik degerine gore asagidaki gibi olasiliksal atama

yapilmaktadir.

e Egerp(U(ay) =uy) =1—1ise a; C; kategorisine atanmaktadir.
o Eger p(U(ay) =2u) =1—1 ve p(U(ay) = ug_q) <t ise a; C, kategorisine
atanmaktadir.

o Eger p(U (ap) = uq_l) < tise a, C, kategorisine atanmaktadur.

Her iterasyonda KV’nin atama bilgileri kullanilarak DP modelleri yeniden
coziilmekte ve olasiliklar giincellenmektedir. Olasiliksal atama yapildiktan sonra
KV’den bir alternatifin kategori bilgisi istenmektedir. Olasilik degeri 0,5’e en yakin
olan alternatif, KV’ye sormak i¢in en belirsiz alternatif olarak kabul edilmektedir.
0,5’e en yakin olasilia sahip alternatifin se¢ilmesindeki amag iki kategori arasinda

atanma belirsizligi en fazla olan1 segmektir.
4. Uygulamalar ve Sonuclar

Geligtirilen olasiliksiz ve olasiliksal algoritmalar ve kiyaslama algoritmalari
literatiirden ii¢ 6rnek problem {izerinde ve ek olarak rastgele olusturulmus problemler
Uzerinde uygulanmaktadir. Birinci problemde ii¢ kriterle degerlendirilen 81 adet
MBA programmin ii¢ kategoriye ayrilmasi istenmektedir. Ikinci problemde ise sekiz
kriterle degerlendirilen 76 adet otobiisiin tamire ihtiya¢ duyulup duyulmadigina dair
dort kategoriye ayrilmasi istenmektedir. Uclincli problemde ise dort kriterle
degerlendirilen 128 {ilkenin enerji performanslari a¢isindan dort kategoriye ayrilmasi
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istenmektedir. Son olarak doérdincu problemde rassal olarak dretilen veri ile
problemler olusturulmaktadir. Weibull dagilimi kullanilarak farkli parametre
degerleri ile her durum icin 100 farkli veri seti olusturulmaktadir. Ug kriterle

degerlendirilen 100 alternatifin bes kategoriye ayrilmasi beklenmektedir.

Ik iki problem icin kisitsiz ve kisith durumlarda olasiliksiz algoritmalar
uygulanmaktadir. Ugiincii problemde ve rastgele olusturulmus problemlerde
olasiliksiz ve olasiliksal algoritmalar birlikte ele alinmaktadir. Birinci ve liglincii
problemlerde parcali dogrusal tercih fonksiyonlar1 varsayilirken ikinci problemde
genel monoton tercih fonksiyonlar1 ele alinmaktadir. Rassal olusturulmus

problemlerde her iki toplamsal fonksiyon da dahil edilmektedir.

Sonuglara gére KV’den atama yapmasi istendiginde gelistirilen algoritmalarin daha
az kategori arasindan se¢im yaptirma egiliminde oldugu goriilmektedir. Gelistirilen
algoritmalar KV’den elde edilen atama bilgileri ve ¢oziilen model sayist agisindan
kiyaslama algoritmalarindan daha iyi performans gostermektedir. Daha genis kategori
araliklarina sahip alternatiflerin atanmasinin sisteme daha degerli bilgiler getirmesi
beklenebilir. Ancak bu caligmada kategori araliklarinin atamalarin belirsizligini
temsil etmedigini ve goreli entropi tabanli yontemin alternatiflerin belirsizligini

belirlemede iyi ¢alistig1 gosterilmektedir.

Geligstirilen olasiliksal algoritmalarin uygulama sonuglarina gére KV’den yeterli bilgi
alinmadan olasiliksal atama yapmama kuralinin kiyaslama yapilan Apgye
algoritmasina gore daha az sayida yanlis siniflandirmaya neden oldugu goriilmektedir.
Ayrica, en diislik goreceli entropiye sahip alternatiflerin olasiliksal olarak atandig:
yaklasimda KV’den elde edilen bilgi sayisinin yiiksek ve yanlis siiflandirma
sayisinin diisiik oldugu ve kiictlik T degerleri durumu ile benzer bir atama performansi

verdigi gozlemlenmektedir.

Model tabanli ve simiilasyon tabanli varsayimsal atamalara sahip algoritmalar,
KV’den elde edilen atama bilgileri ve olasiliksal atamalarin dogrulugu agisindan

benzer performanslar gostermektedir. Simiilasyona dayali teknik, KV yeterli sayida
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alternatif atadiginda 10.000 uyumlu parametre seti olusturmak i¢in ¢ok fazla zaman
almaktadir. KV’nin tercihlerinin genel bir monoton tercih fonksiyonu ile tutarl
oldugu varsayildigir etkilesimli bir ortamda simiilasyon tabanli bir yaklagim

yiiriitmenin miimkiin olmadig1 ortaya ¢cikmaktadir.

Calismanin iki kisitlamas1 bulunmaktadir. Ilk olarak, kategori, kriter veya alt aralik
sayis1 arttikca olasiliksiz durumda KV nin bilissel yiikii de artmaktadir. Ornegin, 5
kategori, 3 kriter ve 100 alternatifli rassal veri uygulamasinda KV tarafindan yaklasik
70 atama yapilmast beklenirken matematiksel modeler tarafindan 30 atama
yapilmaktadir. Ayrica olasilikli  durumda kategori sayis1 arttikga yanlis
siniflandirmalarin sayis1 da artmaktadir. Gelecekteki bir arastirma olarak KV’nin
muhakeme yiikiini ve yanlis siniflandirmalar1 azaltmak igin farkli durma kosullar

denenebilir.

Ikinci kisitlama olarak bu ¢alismada kullanilan modellerin KV’nin tercih fonksiyonu
ile tutarli oldugu varsayilarak matematiksel modellerin her zaman olurlu bir ¢6zUm
sunmasidir. Ancak, KV’nin atamalar1 toplamsal fayda fonksiyonlar1 ile tutarli
olmayabilir. Matematiksel modeller olursuz ¢6zumlerle sonuclanarak bu tor
tutarsizliklar tespit edecektir. Tutarsizliklari ele almanin bir yolu, tercihlerini gézden
gecirmesi i¢in KV’ye sunmaktir. Ek olarak, Ciomek vd. (2017) ¢alismasindaki gibi
KV’nin siirecin dnceki asamalarina geri donmesi saglanabilir. Tutarsizliklar ele
almanin bir bagka yolu da matematiksel modellerin olursuzlugunu ele almaktir.
Smiflandirma hatalarinin toplamint en aza indirmek, maksimum siniflandirma
hatasini en aza indirmek ve yanlig siniflandirma sayisini en aza indirmek gibi amag

fonksiyonlar1 kullanilabilir (6rn., Chinneck, 2008).

Gelistirilen algoritmalar lisansiistii 6grenci kabuliiniin yan1 sira hasta veya tedarikgi
siiflandirmast gibi birgok probleme dogrudan uygulanabilir. Gelecekteki bir
arastirma yonii olarak, monoton olmayan kriterlerle CKS problemlerine etkilesimli
bir yaklasim gelistirmek i¢in bu calisma genisletilebilir. Diger arastirma alanlari,
atamalarin olasiliklarini belirlemek i¢in Bayes yaklagimi1 kullanmak ve yari-ighiikey

veya Lp norm fonksiyonlar1 gibi farkli fayda fonksiyonu formlariyla ¢alismak olabilir.
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